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HIGHLIGHTS

« A novel double-Gaussian full wake model is proposed to describe velocity deficits.
e The proposed model shows good agreement with LES data and measurements.
« The proposed model provides good accuracy for power prediction in the multiple wakes,

ARTICLEINFO ABSTRACT

Keywords: A novel full wake model using a double-Gaussian function is derived in this study. Firstly, the full wake char-
W“I'(d ‘“ﬂ:ll"le wakes acteristics under different inflow and turbine operation conditions are investigated using large eddy simulation.
Wake mode

The ambient turbulence intensity and thrust coefficient are found to be the key parameters that determine the
wake recovery rate and the distance where double-peak velocity deficits transition to one-peak distribution. A
novel double-Gaussian wake model is then proposed to estimate the mean velocity deficit in both the near and far
wake region. A linear wake expansion rate and non-linear Gaussian minima are demonstrated and utilized to
describe the shape transition of velocity deficit from near-wake to far-wake region. All the parameters in the
model are expressed as a function of thrust coefficient and ambient turbulence intensity. Finally, the proposed
model is validated using a set of LES results and experimental data. The predicted velocity profiles in the near
wake region by the proposed model show good agreement with LES and measurements. Furthermore, the pro-
posed full wake model is applied to Horns Rev. offshore wind farm and provides good accuracy for power
prediction in the multiple wakes as well. The applications of this new full wake model include, but are not
limited to turbine layout optimization, farm control, and repower of existing wind farms.

Double-Gaussian
Velocity deficit
Wind farm power prediction

1. Introduction loading on downstream turbines in wind farms, presenting challenges

for energy production efficiency and turbine longevity. As a result,

Wind energy has become one of the fastest-growing sources of
renewable energy, with global installed capacity surpassing 1021 GW by
2023 [1], driven by the rapid adoption in many countries. Offshore wind
farms are seeing rapid expansion due to their potential for higher ca-
pacity factors and less land-use conflict compared to onshore in-
stallations. However, as wind farms increase in scale and density,
challenges such as wind turbine wakes, the regions of reduced wind
speed and increased turbulence downstream of turbines, become critical
to address. Wind turbine wakes cause power losses and increased fatigue
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extensive research has been conducted to develop accurate models and
mitigation strategies for managing wake effects [2-4]. Although high-
fidelity computational fluid dynamics models can provide accurate
and detailed turbulent flow field, analytical wake models are low
computational cost and thus preferred to be utilized in wind farm layout
design [5] and wind farm control [6], where many simulations are
required to reach an optimum solution.

In the wake of a wind turbine, the velocity decreases, while the
turbulence intensity increases [7]. The length of near-wake region is
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typically less than three times the diameter of the rotor [8], where the
wake behavior is complicated to deal with since it is affected by the
blade, nacelle and tower aerodynamics [7,9]. Wind turbines are nor-
mally located in the wind farm with a distance larger than three di-
ameters of the rotor. Therefore, most studies have made efforts on the
modelling of far wake regions, where analytical solutions of the velocity
deficit can be obtained by utilizing the assumption of axisymmetric and
self-similar distributions. The most widely used wake model for velocity
deficit was first introduced by Jensen [10], which uses a top-hat dis-
tribution and a linearly expanding wake. The Jensen model was further
developed by Frandsen [11]. Compared with the top-hat distribution,
experimental data [4,12] and numerical simulations [9] have shown
that the Gaussian distribution is more reasonable to explain the velocity
deficit profile in the mid- to far-wake regions. Hence, it was used in most
updated wake models [13-19]. However, these models lack accuracy in
the near-wake region, where the Gaussian distribution is unjustified
[20].

Recently, the necessity of full wake models that can not only provide
good estimation in the far wake region but also accurately describe the
velocity deficit in the near wake regions is raised for the following two
reasons. Firstly, some onshore wind turbines tend to be closely installed
with a spacing close or even below 3D [21], where the downstream
turbines are significantly affected by near wake effects. Secondly, there
is a need to measure the wind speed inside existing wind farms when
they are repowered. Repowering involves replacing old turbines with
new ones. In such cases, the wind speed measurement equipment is
often forced to be installed close to the wind turbines, as permission and
space constraints make it impractical to install equipment a significant
distance from the turbines. Therefore, accurate wake models are
required to accurately assess wind conditions. This ensures that the
measurements are not influenced by the turbine wake and reflect real
wind conditions. The existing full wake models are summarized in
Table 1. The first type of full wake model is developed based on a super-
Gaussian shape function [22], which evolves from a smooth top-hat
shape in the near wake region and leads to the single-Gaussian shape
in the far wake. Zhang et al. [23] also introduced the super-Gaussian
function to refine the near wake model, which is then combined with
four different far wake models to develop four temporal wake models
aiming at capturing the time-varying nature of the wake. Wei et al. [24]
applied the super-Gaussian function as well to the development of a
three-dimensional wake model. However, it was found that the super-
Gaussian assumption was only applicable to the high ambient turbu-
lence cases.

Another velocity deficit distribution is based on the double-Gaussian
shape function. Keane et al. [25] firstly proposed a wake model taking

Table 1
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the double-Gaussian function to describe the velocity deficit in both
near- and far-wake regions. Later, Schreiber et al. [26] found and
resolved some issues in the original model of Keane et al. [25], primary
concerning momentum conservation in the near-wake region. However,
the streamwise function of velocity deficit still has the possibility to
diverge when the thrust coefficient has a large value. Keane [27] also
noted the shortcoming in the previous work and updated the model by
introducing a real and complex solution of the wake deficit equations,
while the complex solution does not have any physical support as the
author mentioned. More recently, the wind shear effects [19], and
anisotropic wake expansion [28] were also incorporated into the
double-Gaussian wake model. However, in the above models, the
Gaussian minima which determines the peak position of velocity deficit
was assumed to be constant with a specific value. This can obtain an
acceptable reproduction in the near-wake region but will lead to un-
derestimation of velocity deficit in the far-wake region as shown in the
work by Schreiber et al. [26]. Moreover, current full wake models based
on double-Gaussian distribution have not carefully considered de-
pendencies on thrust coefficient and ambient turbulence intensity.
Zengler et al. [29] also noticed this problem and proposed an extension
of the double-Gaussian wake model that incorporates the position of the
Gaussian peaks depending on the thrust coefficient. However, it was still
assumed that the peak position of velocity deficit is constant and de-
pendencies on ambient turbulence are not included. These are key fac-
tors that significantly influence the behavior of the wake as mentioned
in relevant studies [30,31]. Without considering these dependencies,
wake models cannot fully capture the complex dynamics of the wake
and can lead to inaccuracies in predicting the impact on downstream
turbines. This highlights that a generic formulation of the double-
Gaussian wake models that incorporate these factors is needed to
improve the accuracy and reliability of wake models and, consequently,
the optimization of wind farm layout and operation.

Section 2 describes the full wake characteristics, the derivation, and
parameter identification of the novel double-Gaussian wake model. In
Section 3, the proposed model is validated using numerical results of
LES, experimental data of the wind tunnel tests and the field measure-
ments, where the proposed model is compared to the conventional
double-Gaussian model, super-Gaussian model and single-Gaussian
model as well. The conclusions are finally summarized in Section 4.

2. Double-Gaussian wake model
Section 2.1 introduces the full wake characteristics in terms of the

mean velocity field obtained from LES numerical simulations. The
formulation of a novel double-Gaussian wake model is then presented,

List of representative full wake models. C(x) denotes the amplitude function of the velocity deficit and «# represents the characteristic wake width. More detailed

information on model parameters can be found in the related literature.

Wake models Shape Function of Velocity Deficit

Blondel and Cathelain [22] Super-Gaussian

Wei et al. [24] Super-Gaussian

Schreiber et al. [26] Double-Gaussian

Keane et al. [25,27] Double-Gaussian
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and the model parameter identifications are described as well in Section
s

2.1. Full wake characteristics

In this study, the large eddy simulation with Smagorinsky-Lill model
[32] in Fluent [33] is used to simulate wind turbine wakes. A 2.4 MW
wind turbine located at the Choshi site is adopted to study the full wake
characteristics. The rotor diameter is 92.0 m and the hub height is
80.0 m as shown in [20]. The influence of the rotor on the flow is
modelled by using an actuator line model. The lift and drag forces are
calculated using the blade element theory as shown in [34]. The nu-
merical schemes of LES model, grid resolutions, computational domain
and boundary conditions perfectly follow the setting in the reference
[20]. The predicted wind turbine wake was validated by the wind tunnel
test [14]. As mentioned in previous studies [35,36], the nacelle and
tower may affect the coherent structures in the near wake region of a
utility-scale wind turbine, while their overall impact on the mean ve-
locity deficit and mean power output is relatively small compared to the
impact caused by the blades. Therefore, to purely understand the de-
pendency of near-wake characteristics on rotor aerodynamic forces, the
nacelle and tower are not modelled in this study. Four simulations with
two kinds of operating condition under the inflow with low turbulence
intensity of I; = 3.5 % and high one of I; = 13.7 % are conducted. They
are labelled as shown in Table 2.

The mean velocities in the wake region are displayed in Fig. 1, where
the contours from LES simulations are shown in the horizontal x-y plane
at the hub-height of z = H. It is noted that the velocity deficit distri-
bution has double peak due to the low-speed structures in the near-wake
region. A jet region (i.e. with negative velocity deficit) can be observed
around the wake boundary area at low turbulence intensity cases, which
is due to acceleration of the flow outside the wake region, as observed by
Neunaber et al. [37]. The double-peak distribution transits to single
peak in the far-wake region due to the turbulence mixing effect. For the
low ambient turbulence intensity cases with I,=3.5 %, the double-peak
velocity deficits are prominent at a downwind distance of about
3D ~ 4D, while this region is shorter with around 2D for high ambient
turbulence cases with I,=13.7 %. This implies that the level of ambient
turbulence intensity has a strong impact on the transition process from
double-peak deficit to single-peak deficit. Furthermore, a closer look at
the wake boundary at different locations reveals that the wake width
gradually widens. This is demonstrated later in Fig. 5, where the in-
crease in ¢ with downstream distance indicates the wake widening,
confirming that the wake expansion is occurring. It is also clear that
large Cr produces stronger deficits in the near-wake region, and the
locations of local minima are closer to tip side than that of small Cr
cases. This is more clearly identified in Fig. 2, where the horizontal
distributions at x = 0.2D are plotted to illustrate the mechanism of the
double-peak deficit. Black open circles and squares represent the ve-
locity deficits AU normalized by the maximum deficit AUpax for low
ambient turbulence cases with I,=3.5 % and high ambient turbulence
cases with I,=13.7 %, respectively. In addition, the distribution of blade
aerodynamic force normal to the rotor dFx is also shown by red solid
lines, which is normalized by the maximum value dFxy,. as well. x de-
notes the streamwise direction. The thrust forces show a m-shape due to
the aerodynamic characteristics of blades, where the peak value for the
large Cr case locates around the mid-span range, while that for the small

Table 2
Description of four simulations.

Simulation Case Thrust coefficient Ambient turbulence intensity

Case 1 Cr = 0.36 I, =35%
Case 2 Cr = 0.84 I, =35%
Case 3 Cr = 0.36 I, =13.7%
Case 4 Cr =0.84 I, =137 %
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Cr case is closer to the blade root. The velocity deficit would present a
similar distribution to that of aerodynamic force, since aerodynamic
force distributions directly determine the initial velocity deficit in the
near-wake region. It can be concluded that the local minimum of double
peak should depend on the ambient turbulence intensity and rotor thrust
coefficient as well.

2.2. Model formulation and parameters

Similar to the single-Gaussian wake model derivation as shown in
[14,16], the axisymmetric assumption and the self-similar distribution
are used for the velocity deficit in the current model. The mean
streamwise velocity U, (x.y.z) in the wake region is expressed as,

Uy(x.y.2) = Up(x.y.2) — AU(x.1) (1)

where Up(x,y.z) is the free stream velocity, AU(x.r) is the velocity
deficit induced by the turbine and is assumed to be axisymmetric about
the rotor axis. r denotes the radial distance from the wake center and is
defined as follows:

e 2

where H is the hub height.
The non-dimensional velocity deficit is then expressed as the product
of a streamwise function F(x) and a radial function ¢(r):

AU(x, 1) /Uy = F(x)gp(r) 3

where Uy, is the free stream velocity at the hub height.

According to the wake characteristics presented in Figs. 1 and 2, a
double-Gaussian function is utilized for the radial function to describe
the spatial distribution of the velocity deficit and is defined as,

2 2
d}(r}_%{exp(_{r""z‘:;m] )+exp(_{r_22;rxl} )} (4)

where r,;, is the radial position of the Gaussian extrema, ¢ is the stan-
dard deviation of the Gaussian function, which represents the width of
each single-Gaussian profile. Fig. 3 depicts the schematic of the double-
Gaussian wake model. The double-Gaussian and its constituent single-
Gaussian functions are plotted by black solid lines and gray dashed
lines, respectively. Blue dashed lines represent the location of the
Gaussian extrema 7. The half-width of velocity deficit with the
Gaussian distribution ry, = v2In26 denotes the location where the
velocity deficit equals the half the maximum value, and the velocity
deficit normalized by the maximum value at the twice of half-width

2ry 2 is 0.018. Accordingly, i(rmin +2v2In2 a) is used to represent

the double-Gaussian wake boundary, which is expressed by the orange
dashed lines as plotted in Fig. 3.

Based on the law of momentum conservation and the above double-
Gaussian distribution with the self-similarity assumption, Keane et al.
[25] and Schreiber et al. [26] derived the analytical solution for the
streamwise function as follows,

M— /M? —1/2N C;D?
F(x) = (5)

2N

where M and N are expressed as follows,

Iﬁliﬂ Timin
M= 2azexp( - 202) + V21 rygoerf (E) (6)
r: NZ3 Ton
— g2 __ _tnin . min
N=o exp( pe ) +—2 Tinoerf (_:r ) 7

A momentum conserving solution of F in Eq. (5) exists only when
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Fig. 1. Contours of mean streamwise velocity at the hub height obtained from LES simulations of a utility-scale wind turbine: (a) Casel (Cr=0.36, I,=3.5 %), (b)
Case 2 (C7=0.84, I;=3.5 %), (c) Case 3 (Cr=0.36, I,=13.7 %), (d) Case 4 (Cr=0.84, I,=13.7 %).

M? — 1/2N C;D? > 0, however, M* — 1/2N C;D* can become negative
in the near-wake region for large values of Cr. Therefore, a third order
approximation of the Taylor expansion of Eq. (5) is performed to obtain
a stable solution as shown in Eq. (8).

M- /M? —-1/2N CyD? 4
Fx) vV /2N Cr. o CiD*  NGID'  N°GiDP ®

2N T 8M ' 64M° ' 128M°

Note that the radial position of the Gaussian extrema r,;, and the
standard deviation of the Gaussian function ¢ have no analytical solu-
tions and need to be modelled. In this study, r,,;, and o are firstly fitted to
the velocity profiles and illustrated as a function of normalized down-
wind distance for the different cases in Fig. 4 and Fig. 5, respectively. In
the original formulation by Keane et al. [25] and Keane [27], 1y, /R is set
as fixed value close to 0.5 which is constant at different downwind lo-
cations, however, it can be seen from Fig. 4 that r,;, decreases in the
near-wake region and increases gradually in the far-wake region. The
tipping point at which the r,;, reaches minimum is around 4D for low
turbulence cases and 2D for high turbulence cases. This is consistent
with the phenomenon shown in Fig. 1, where the double-peak

distribution transits to a single peak at a similar distance with the
tipping point of r,;. Based on the characteristics described above, a
formula is proposed to fit the variation of r,; with the downwind dis-
tance x.
. =0.5

GTMZ%'W(H'C%) ©)
where R = D/2, b represents the initial value of 1, at x = 0. The values
of normalized Gaussian minimum ry;, /R fitted by Eq. (9) are plotted by
red lines in Fig. 4 for comparison as well, from which Eq. (9) can well
describe the variation for different cases.

As for the modelling of &, Keane [27] took it to be varying as x",
where n is the exponent of downwind distance and needs to be tuned for
different conditions. As shown in Fig. 5, the ¢ of the double-Gaussian
function expands approximately linearly for the different cases, where
the red lines represent the linear fitting curves for the normalized values
of ¢/D. It is known that approximating the normalized standard devia-
tion of the velocity deficit profile with a linear expression in high tur-
bulence conditions may not be very accurate. Proposing a reasonable
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Fig. 2. Horizontal distribution of normalized velocity deficit at x = 0.2D and normalized thrust force on the rotor. (a) Cr=0.36, (b) Cr=0.84.

x/D

Fig. 3. Schematic of the double-Gaussian full wake model: The double-Gaussian and its constituent single-Gaussian functions are plotted as black solid and gray
dashed lines, respectively. Blue dashed and orange dashed lines represent the location of the Gaussian extrema r,;, and the wake boundary, respectively. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. Normalized Gaussian minimum of the velocity deficit profiles: (a) Casel (Cr=0.36, I,=3.5 %), (b) Case 2 (Cr=0.84, I,=3.5 %), (c) Case 3 (Cr=0.36, I;=13.7
%), (d) Case 4 (Cy=0.84, I,=13.7 %). Red lines represent the values fitted to Eq. (9). (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)

nonlinear expression for high turbulence cases remains a future work.
Using the same formula for all cases allows us to maintain a consistent
model expression across all cases. Therefore, ¢ is formulated with a
linear function as follows,

a . X
E—kﬁ"rt (10]

where k" governs the rate of wake expansion or wake deficit recovery,
and ¢ denotes the initial wake expansion at x = 0. Note that although the
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Fig. 5. Normalized standard deviation of the velocity deficit profiles: (a) Case 1 (Cy=0.36, I,=3.5 %), (b) Case 2 (Cr=0.84, I,=3.5 %), (¢) Case 3 (Cr=0.36, I,=13.7
%], (d) Case 4 (Cr=0.84, I,=13.7 %). Red lines represent the values fitted to Eq. (10). (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)

wake expansion for double-Gaussian velocity deficits is also assumed to
be linear in the previous study by Schreiber et al. [26], the current study
is first time to demonstrate it and identify the model parameters. The
plots in Fig. 5 illustrate that the wake expands faster as the ambient
turbulence intensity increases. It is because the higher surrounding
turbulence enhances flow mixing, resulting in faster wake expansion and
recovery. The wake expansion rate is likely to be more influenced by the
turbine than the ambient turbulence. This inference can also be seen if
the small Cr cases and large Cr cases with same I, are compared, where
the wake width of large Cy cases increase faster that of small Cr cases.
These characteristics imply that wake behavior depends on not only the
ambient turbulence but also the turbine thrust coefficient.

In the above two new formulas, there are five unknown parameters
in Egs. (9) and (10), including a, b, ¢, k" and e. In the original formula.
Regarding to e, Schreiber et al. [26] derived it based on mass conser-
vation; however, the solution can only be calculated numerically as a
function of the thrust coefficient Cy and the Gaussian minimum rp,;,. To
generalize the model for different turbulence conditions and turbine
operations, the above five unknown parameters including a, b,c.k” and ¢
are modelled as the function of the thrust coefficient Cy and the turbu-
lence intensity I, as follows,

empirical constants of C;, C, and Cs. To obtain the values of empirical
constants for above five model parameters, an error-minimization
optimization is utilized to process the entire data set concurrently,
where the error is defined as follows,

error = 12)

It describes the root-sum-square of the RMSE; considering N = 4
cases with different conditions as shown in Table 3. The RMSE denotes
the root-mean-squared-error between the wake model and LES data. The
performance of the wake model depends on the data adopted for its
parameter identification, thus, the LES data from x = 0.5D to 10D at
intervals of 0.5D are used for accurately gauging not only the position of
the velocity deficit minimum but also the wake width expansion rate.
The genetic algorithm (GA) optimization tool in MATLAB [38], is
adopted to identify the empirical constants in the above formulas. After
the error-optimization process, the empirical constants are identified
and the expression for a, b, ¢, k” and ¢ are summarized as follows. The
model parameters are identified based on cases where the ambient
turbulence intensity I, is larger than 0.03, therefore, in engineering
applications, I, should be set to 0.03 when the ambient turbulence in-

K =G CeI% (11)  tensity is less than 0.03.
This empirical formula was originally developed by Ishihara and a = 0.2¢4[05 (13)
Qian [14], which can give the model greater tuning abilities by
considering the inflow flow and turbine operating conditions with three b = 0.75C0%;005 (14)
Table 3
Description of the Ishihara-Qian DG model.
Wake model Formulas Parameters
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¢ = 5.86CH 2 15
k' = 0.09¢:M 0 (16)
e = 0.15C; 02002 a7

Note that, the model for the added turbulence intensity proposed by
Ishihara and Qian [14], which is also a double-Gaussian model
describing the three-dimensional distribution of turbine generated tur-
bulence intensity in the wake, is used in couple with the current version
of model for velocity deficit. To facilitate the implementation of the
newly proposed model, Table 3 summarizes the Ishihara-Qian model
with double-Gaussian distributions (hereafter referred to as Ishihara-
Qian DG model), where the key formulars and parameters are listed.
In addition, the wake model for wind turbine towers proposed by
Yoshida and Kiyoki [39] can be combined with the newly proposed
wake model for a wider range of engineering applications.

Applied Energy 391 (2025) 125859

3. Model validation

To validate the novel full wake model, the results predicted by the
newly proposed model are compared against the LES data and experi-
mental data for the scenario of single wind turbine wake in Section 3.1.
Subsequently, Section 3.2 presents the comparison between the wake
models and LES data regarding the power production in wind farms for
the scenario of multiple wind turbine wakes.

3.1. Single wind turbine wake

Fig. 6 plots the horizontal distributions of normalized velocity deficit
at several downwind locations to represent the quantitative comparison
between different wake models and the numerical results. From an en-
gineering point of view, it is not possible to place two turbines closer
than 1D, so values below x/D < 1 are not included in Fig. 6. Open circles
depict the LES data as presented in Section 2.1. The blue, yellow, green
and red lines illustrate the predicted results by Ishihara and Qian’s
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Fig. 6. Horizontal profiles of normalized velocity deficit (left) and corresponding RMSEs of different wake models (right) at various downstream locations in wind
turbine wakes: (a) Casel (Cy=0.36, I,=3.5 %), (b) Case 2 (Cy=0.84, I,=3.5 %), (c) Case 3 (Cr=0.36, I,=13.7 %), (d) Case 4 (Cr=0.84, [,=13.7 %).
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single-Gaussian model [14] (hereafter referred to as “Ishihara-Qian SG
model”), Blondel's super-Gaussian model [22], and Keane's conven-
tional double-Gaussian wake model [27] and the newly proposed full
wake model. This study focusses on model performance not only in the
near wake region but also in the far wake region and demonstrates the
advancement of the new model in the far wake region, compared with
the Ishihara and Qian single-Gaussian model [14]. For the Blondel's
super-Gaussian model, the default model parameters from reference
[22] are used. The ratio of effective rotor diameter d./d, and wake
expansion exponent n in Keane's model are set as 1, which are consistent
with the proposed model in this study. The other two parameters in
Keane's model including wake expansion rate k and local Gaussian
minimum ry;, are the values from the cases with the closest Cr in the
reference [27]. The corresponding RMSEs with respect to the LES so-
lutions are also reported at the right-hand side using same colour lines
for each wake model. The normalized velocity deficit is expressed as:

AU Ugp—-U

== _ 18
Ugp Uon (18)

where Uy, is the inflow velocity at the hub height, U is the streamwise
velocity, and AU is the velocity deficit. The x-axis denotes the distance
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from the wind turbine and is normalized by the rotor diameter D. It is
noted from the LES data plotted in Fig. 6 that, for low ambient turbu-
lence cases, the velocity deficit presents a transition from double-
Gaussian distribution in the near-wake region (x < 3D) to a smooth
top-hat or an approximate super-Gaussian shape in mid-wake region
(x = 3D ~ 5D) and finally to a single-Gaussian distribution in the far-
wake region (x > 5D). While for high ambient turbulence case,
because of the stronger turbulent mixing, the double-Gaussian distri-
bution can only be clearly visible in the near-wake region (x < 2D) and
then develops to single-Gaussian shape very quickly. In general, the
velocity deficit profiles predicted by the proposed full wake model
capture these behaviors very well and show most favorable agreement
with the LES data. Note that the calibration of the model parameters is
performed with the goal of minimizing the overall errors of the four
cases, but this does not guarantee that the obtained parameters are
optimal for each case. Therefore, the differences with LES data may not
be sufficiently suppressed in some locations. As anticipated, the
Ishihara-Qian SG model shows a very large RMSE in the near-wake re-
gion than the other two double-Gaussian models, but it still can provide
good performance in the far-wake region where the velocity deficit
distributions are indeed characterized by one peak. Compared with the

o LES Ishihara-Qian (2018) — Blondel (2020) Keane (2021) Proposed
(a) CT=0.36, I =3.5% C._=0.36, I =3.5%
a T a
2500 T T T T T T T 0.15
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Fig. 7. Variation of wind power generated by the turbine located at different downwind locations: (a) Casel (Cr=0.36, I,=3.5 %), (b) Case 2 (C7=0.84, I,=3.5 %),

(c) Case 3 (Cy=0.36, I,=13.7 %), (d) Case 4 ((C+=0.84, I,=13.7 %).
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single-Gaussian model, the Blondel’s super-Gaussian model can capture
a wider wake width in the near wake region, but it generally un-
derestimates the velocity deficit in the near wake region. In the far wake
region, the performance of the super-Gaussian model is generally
satisfactory, except for a significant overestimation in Case 3. The Keane
model overestimates the velocity deficits in the near-wake region (x =
1D ~ 2D) for all cases, and underestimates those in the far-wake region
for small Cr cases. These discrepancies can be attributed to the fact that
the Gaussian minimum ry,;, is set to be constant in different downwind
distances and the wake expansion rate k is not variable with ambient
turbulence intensity.

Next, the ability of the above three wake models to predict the power
production of another turbine placed in the wake region is investigated.
Firstly, the rotor-effective incoming wind speed U, for the turbine
experiencing wakes is defined as:

UBdA
U=y fT 19)
o

where U, is the wind speed in the wake region, A is the rotor area. The
power curve of the MHI 2.4 MW turbine as described in Qian et al. [20]
is used to estimate the power generated by a wind turbine located at
different downwind locations for the four cases as plotted in Fig. 7,
where the open circles denote the power obtained by the LES, and those
predicted by three wake models are shown by blue, green and red lines,
respectively. Here, only the power at locations of x > 2D are evaluated
considering that a wind turbine is rarely located in the region of x < 2D.
The proposed full wake model reasonably predicts the variation of
power versus downwind locations for all cases. The Ishihara-Qian SG
model generally overestimates power, especially in the near-wake re-
gion due to the assumption of the single-Gaussian distribution, which
leads to the underestimation of velocity deficit in the wake region as
plotted in Fig. 6. Blondel's super-Gaussian model overestimates the
power in the mid- and far-wake regions when Cy is small, while un-
derestimates them when Cy is large. Keane's model overestimates the
power in the mid- and far-wake regions for the two low turbulence cases
and slightly underestimates it for Case 4 with high turbulence and large
thrust coefficient. Additionally, the corresponding NRMSEs with respect
LES results are plotted as well at the right-hand side of each figure,
where the NRMSE denotes the RMSE of predicted power of downwind
turbine normalized by the LES resolved power of upwind turbine. The
proposed model consistently has the lowest NRMSE and high accuracy
across all conditions. In Case 3 (Cr=0.36, I,=13.7 %), the error of the
proposed model is slightly higher than that of Keane’s model, but the
proposed model shows a steady improvement in accuracy in almost all
cases, and the total NRMSE of the proposed model for the four cases is
about half of that of the Keane’s model.

To further validate the accuracy of the proposed model, four more
data sets are utilized and the relevant information regarding turbines
size, operation, inflow and data type for each case is summarized in
'able 4. The first data set for Case V1 is from the wind tunnel experiment
performed with the scaled wind turbine G1 [26], where the horizontal
time-averaged velocity profiles at six selected downstream locations (x/
D =1.4,1.7, 2, 3, 4, and 6) were measured in the wind tunnel of the
Politecnico di Milano. For Case V2, horizontal profiles of normalized
velocity at three selected downwind locations (x/D = 1, 3, and 4) of a
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MHI 2.4 MW offshore wind turbine at Choshi site were obtained from a
scanning LiDAR in PPI scan mode [40]. Since the LiDAR scan azimuth
angle is almost perpendicular to the incoming flow for x =~ 2D, the
measured data is not plotted at this location due to the large measure-
ment error. The third data set for Case V3 corresponds to two vertical
profiles selected in the near wake region of a UP77 1.5 MW onshore
wind turbine located in northern Hebei Province, China [41], measured
by a scanning LiDAR in RHI scan mode. The last data set for Case V4 is
taken from the research data in the CL-Windcon project [42], a Large
Eddy Simulation (LES) of the wakes of a INNWIND.EU 10 MW reference
turbine using the high-fidelity solver SOWFA. This selected data set,
characterized by low incoming turbulence intensity, was representative
of offshore environments. Vertical profiles of streamwise velocity were
sampled at six selected locations (x/D = 1.5, 2, 2.5, 3, 4, and 6)
downstream of the wind turbine. As shown in previous research by
Ishihara and Qian [14], wake characteristics such as mean velocity
deficit and added turbulence intensity of the model wind turbine and the
utility-scale turbine are relatively close if thrust coefficient and ambient
turbulence intensity are the same. Therefore, although the wind turbines
in the first three validation cases are not very large, they are able to
validate the accuracy of the proposed model.

To illustrate a quantitative comparison of the predicted results by the
wake models with reference data sets, the horizontal and vertical pro-
files of time-averaged velocity at selected downwind locations are
plotted in Fig. 8, Fig. 9, Fig. 10, and Fig. 11 for the four validation cases,
respectively. Here, all values are normalized by the incoming wind
speed Uy. The results predicted by the proposed wake model, the super-
Gaussian model, the Keane's model and the Ishihara-Qian SG model are
plotted using red, yellow, green and blue lines, respectively. Compared
with the super-Gaussian and single-Gaussian models, it is found that the
wake profiles estimated by the proposed double-Gaussian model show
good agreement with those obtained from the reference data sets. The
parameters of the proposed wake model are not calibrated using these
three experimental data and one numerical data. This indicates that the
proposed wake model is robust enough to predict both horizontal and
vertical profiles in the wake of wind turbines with different sizes under
different operating conditions and environment conditions. However,
Keane's model clearly underestimates the minimum wind speeds in the
near wake-region (x < 2D). This is likely due to the use of a non-physical
solution in Eq. (5). Furthermore, the locations of the minima in the
Gaussian distribution do not match well the measurement, which also
leads to discrepancies in far wake region.

3.2. Wind farm power production

To apply the proposed double-Gaussian wake models to a wind farm
power prediction, the multiple wake model proposed by Qian and Ish-
ihara [43] are utilized. As summarized in Table 5, the multiple wake
model includes the formulas of the rotor onset wind speed Uy ;, turbu-
lence intensity I,;, rotor-based energy deficit superposition principle,
and a modified Linear Sum of Square (LSS) principle for turbulence in-
tensity. The detailed implementation of the multiple wake model is used
as shown in Qian and Ishihara [43].

The dataset of LES results [44] for the Horns Rev offshore wind farm
is selected for validation, where 80 Vestas 2 MW wind turbines are

Table 4
Cases for model validation.
Case Turbine D (m) H (m) Cr I, Walke profile Reference data type
Vi G1 [26] 1.1 0.8 0.36 35% Horizontal Wind tunnel experiment
V2 MHI 2.4 MW [40] 92 80 0.84 35% Horizontal Scanning LiDAR
V3 UP77 1.5 MW [41] 77 65 072 11 % Vertical Scanning LIDAR
V4 INNWIND.EU 10 MW [42] 178.3 119 0.84 5.1 % Vertical LES simulation by SOWFA
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Fig. 8. Validation of the proposed model using the horizontal profiles of mean streamwise velocity at hub height from the wind tunnel tests of a G1 wind tur-

bine [26].
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Fig. 9. Validation of the proposed model using the horizontal profiles of mean streamwise velocity at hub height from the scanning LiDAR measurements of a 2.4

MW MHI offshore wind turbine at Choshi site [40].
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Fig. 10. Validation of the proposed model using the vertical profiles of mean streamwise velocity at the central cross section from the scanning LiDAR measurements

of a 1.5 MW UP77 onshore wind turbine [41].
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Fig. 11. Validation of the proposed model using the vertical profiles of mean streamwise velocity the central cross section from high-fidelity SOWFA simulation of a

10MW INNWIND.EU reference wind turbine [42].
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Table 5
Description of the multiple wake model.
Wake model Formulas
Equivalent wind speed: Uy; = %fmwy[x,-.y_z)dA
Rotor onset Equivalent turbulence intensity:
1 I
Ii = ao, vV Jrowr®a (i, . 2)dA
pod 1
Velocity deficit U= \‘f G- Y0 (URi—U2:), Uni = Uni— U,
superposition

AU /Uy = F(Cri,dag x/D)plri/m)
o =gt E:r NEEAES Aoeg)’,
Aoyi/Uni = G(Cri.lai x/D)glri/oi)

Added turbulence
superposition

arranged as shown in Fig. 9 (a). There are 10 columns running east-west
and 8 rows running north-south. Three typical wind directions as noted
by the solid arrows in Fig. 9 (a) are simulated, where turbines are in a
full overlap wake condition. The corresponding turbine distances and
free stream incoming wind conditions are listed in Table 6.

For quantitative comparison, Fig. 12 illustrates the predicted power
production in the three wind directions, where the power of each wind
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turbine is normalized by the most upstream one. The comparison of
wind farm power in a wider range of wind direction is presented in
Fig. 12 as well, where the simulated power output is normalized by the
power of an equivalent number of stand-alone wind turbines operating
in the same incoming wind condition. For comparison, the predicted
powers by the Ishihara-Qian SG model, Blondel’s model, Keane’s model
and proposed model are plotted by the blue lines, yellow lines, green
lines and red lines, respectively. Seen from the LES results plotted by
open circles in Fig. 12, the second downstream turbine produces
significantly less power, while the reduction in further downstream
turbines subsides. This is because the relatively higher turbulence levels
in the wake compared with the incoming flow increase flow entrain-
ment, resulting in faster wake recovery. The proposed wake model il-
lustrates favorable agreement with the LES data for different wind
directions. The Ishihara-Qian SG model generally overestimates the
powers of downstream turbines, while the Blondel' super-Gaussian
model presents significant underestimations for all the cases. The
Keane's model gives visible underestimations, especially when the wind
direction is within 270" 4 5, which can be seen more clearly in Fig. 13.
The Keane’'s model is not turbulence intensity dependent, thus it cannot
consider the increase of turbulence intensity in the wind farm. The
maximum relative error of predicted power with respect to LES data is
also estimated for each case and summarized in Table 7. The proposed

Table 6 model shows smaller errors for each wind direction than the Ishihara-
Description of simulation cases for the Horns Rev. offshore wind farm. Qian single-Gaussian model and provides good agreement with the
Simulation  Wind direction  Turbine Free Ambient LES data. It is noticed that the maximum error predicted by Blondel's
Case distance  stream turbulence super-Gaussian model generally occurs in the second row, which means
wind intensity at that the main discrepancy derives from the original single wake model,
speed at hub height . R . _ . .
hub height respectively. The Keane's double Gaussian model exhibits an increase in
errors as the number of turbine rows grows.
Case 1 Ouing = 2707 7.0D 8m/s 7.7 %
Case 2 Ouind = 222 9.3D
Case 3 Ouing = 312° 10.4 D
(a) (b) Wind direction 270°
60 - - - - T T T T T
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Fig. 12. Comparison of normalized power between LES data [44] and those predicted by wake models: (a) is the layout configuration of the Horns Rev. wind farm,
and (b), (c), and (d) are results in wind directions of 2707, 222° and 312°, respectively.
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Fig. 13. Comparison of wind farm power efficiency of LES simulations [44] and wake model prediction for wind directions between 200° and 290°.

Table 7
Maximum relative error of predicted power with respect to measured data.
Model Buind = 270 Ouind = 222 Ouina = 312
Ishihara-Qian [14] - Single-Gaussian 11.8% 10.5 % 8.4 %
Blondel [22] — Super-Gaussian 44.3 % 37.7 % 37.2%
Keane [27] - Double-Gaussian 20.8 % 8.2 % 6.7 %
Proposed model — Double-Gaussian 4.3 % 1.9 % 2.6 %

4. Conclusions

In this study, a novel double-Gaussian full wake model is developed
considering dependence on the ambient turbulence intensity and the
thrust coefficient. The proposed wake model is then applied to power
prediction in both scenarios of single wake and multiple wakes in a wind
farm. The following conclusions are obtained:

1. The numerical results obtained from a series of LES simulations of a
utility-scale wind turbine wake reveal that the double-peak distri-
bution of velocity deficit in the near-wake is attributed to the unu-
niform distributed thrust force on the rotor. The ambient turbulence
intensity and thrust coefficient are the key parameters that deter-
mine the wake recovery rate and the distance where double-peak
velocity deficits transition to one-peak shape.

. Anovel full wake model using double-Gaussian function is derived to
predict turbine wakes, where a non-divergent form for the amplitude
of the velocity deficit in the streamwise direction is proposed using a
third-order Taylor series approximation of the conventional formula.
Compared to conventional models, a linear wake expansion rate and
non-linear Gaussian minima are proposed to describe the shape
transition of velocity deficit from the near-wake region to the far-
wake region. All parameters of the proposed model are expressed
as functions of the ambient turbulence and thrust coefficient to
achieve better accuracy and robustness in practical applications.

. In the single wake scenario, the velocity profiles estimated by the
proposed wake model are in good agreement with those obtained
from numerical simulations by LES and the measurements with
different ambient turbulence and thrust coefficients conditions.
Furthermore, comparison with the LES simulations of the Horns Rev
wind farm reveals that the power predicted by the proposed wake
model is accurate in multiple wake scenario with different turbine
distances.

13

Author Contribution

This study was done by Guo-Wei Qian and Takeshi Ishihara. Guo-Wei
Qian and Takeshi Ishihara designed the structure of the paper and wrote
the paper.

CRediT authorship contribution statement

Guo-Wei Qian: Writing — original draft, Visualization, Software,
Investigation, Formal analysis, Data curation. Takeshi Ishihara:
Writing — review & editing, Validation, Supervision, Resources, Meth-
odology, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgments

This research was carried out as a part of the joint program for next
generation of energy infrastructure with Toshiba Energy Systems &
Solutions Corporation, J-POWER, Shimizu Corporation, MHI Vestas
Offshore Wind Japan, ClassNK. This research was also supported by
Guangdong Basic and Applied Basic Research Foundation (No.
2024A1515010547, No. 2024B1515250004), the National Key
Research and Development Program of China (Grant No.
2022YFC2806300), the Innovation Group Project of Southern Marine
Science and Engineering Guangdong Laboratory (Zhuhai) (No.
311023014), Fundamental Research Funds for the Central Universities,
Sun Yat-sen University (Grant No. 23qnpy83). The authors express their
deepest gratitude to the concerned parties for their assistance during this
study.



G.-W. Qian and T. Ishihara

Data availability

Data will be made available on request.

References

[1]

(2]

(3]

4]

[5]

[6]

(7]

[81

[9]

[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

WWEA. WWEA Annual Report 2023. https://wwindea.org/AnnualReport2023..
2024, p. 1-10.

Gagmen T, Van Der Laan P, Réthoré PE, Diaz AP, Larsen GC, Ott 5. Wind turbine
wake models developed at the technical university of Denmark: A review. Renew
Sust Energ Rev 2016;60:752-69. https://doi.org/10.1016/j.rser.2016.01.113,
Porté-Agel F, B khah M, St ddin S. Wind-turbine and wind-farm flows: A
review. Bound-Layer Meteorol 2019;174:1-59. https://doi.org/10.1007/510546-
019-00473-0.

Ishihara T, Yamaguchi A, Fujino Y. Development of a new wake model based on a
wind tunnel experiment. Global Wind Power 2004,

Crespo A, Hernandez J, Frandsen S. Survey of modelling methods for wind turbine
wakes and wind farms. Wind Energy 1999;2:1-24. hitps://doi.org/10.1002/(5I1CI)
1099-1824(199901/03)2:1 <1::AID-WE16>>3.0.CO;2-7.

Kheirabadi AC, Nag; R. A quantitative review of wind farm control with the
objective of wind farm power maximization. J Wind Eng Ind Aerodyn 2019;192:
45-73. https://doi.org/10.1016/j.jweia.2019.06.015.

Vermeer LJ, Sprensen JN, Crespo A. Wind turbine wake aerodynamies. Prog Aerosp
Sci 2003;39:467-510. https://doi.org/10.1016,/50376-0421(03)00078-2.

Crespo A, Herndndez J. Turbulence characteristics in wind-turbine wakes. J Wind
Eng Ind Aerodyn 1996:61:71-85. https://doi.org/10.1016,/0167-6105(95)00033-
X

Xie SB, Archer C. Self-similarity and turbulence characteristics of wind turbine
wakes via large-eddy simulation. Wind Energy 2014;17:657-69. hiips://dol.org/
10.1002/we.

Jensen NO. A note on wind generator interaction. 1983. Riso-M-2411.

Frandsen S, Barthelmie R, Pryor S, Rathmann O, Larsen S, Hojstrup J. Analytical
modelling of wind speed deficit in large offshore wind farms. Wind Energy 2006;9:
39-53. https://doi.org/10.1002/we.

Chamorro LP, Porte-Agel F. A wind-tunnel investigation of wind-turbine wakes:
Boundary-layer turbul effects. Bound-Layer Meteorol 2009;132:129-49,
https://doi.org/10.1007/s10546-009-9380-8.

Ainslie JF. Calculating the flowfield in the wake of wind turbines. J Wind Eng Ind
Aerodyn 1988;27:213-24, hitps://doi.org/10.1016/0167-6105(88)90037-2,
Ishihara T, Qian GW. A new Gaussian-based analytical wake model for wind
turbines considering ambient turbulence intensities and thrust coefficient effects.
J Wind Eng Ind Aerodyn 2018;177:275-92. htips://doiorg/10.1016/].
jweia.2018.04.010.

Gao X, Yang H, Lu L. Optimization of wind turbine layout position in a wind farm
using a newly-developed two-dimensional wake model. Appl Energy 2016:174:
192-200. https://doi.org/10.1016/j.apenergy.2016.04.098,

Bastankhah M, Porté-Agel F. A new analytical model for wind-turbine wakes.
Renew Energy 2014;70:116-23. https://doi.org/10.1016/].renene.2014.01.002.
Sun H, Yang H. Study on an innovative three-dimensional wind turbine wake
model. Appl Energy 2018;226:483-93. hitps://doi.org/10.1016/J.
APENERGY.2018.06.027.

Sun H, Gao X, Yang H. Validations of three-dimensional wake models with the
wind field measurements in complex terrain. Energy 2019;189:116213. hiips://
doi.org/10.1016/j.energy.2019.116213,

Gao X, Li B, Wang T, Sun H, Yang H, Li Y, et al. Investigation and validation of 3D
wake model for horizontal-axis wind turbines based on filed measurements. Appl
Energy 2020;260:114272. https://doi.org/10.1016/J.APENERGY.2019.114272.
Qian GW, Song YP, Ishihara T. A control-oriented large eddy simulation of wind
turbine wake considering effects of Coriolis force and time-varying wind
conditions. Energy 2022;239:121876. https://doi.org/10.1016/].
energy.2021.121876.

Schreiber J, Salbert B, Bottasso CL. Study of wind farm control potential based on
SCADA data. J Phys Conf Ser 2018;1037:032012. https://doi.org/10.1088/1742-
6596,/1037,/3/032012.

14

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]
[39]

[40]

[41]

[42]

[43]

[44]

Applied Energy 391 (2025) 125859

Blondel F, Cathelain M. An alternative form of the super-Gaussian wind turbine
wake model. Wind Energy Science 2020;5(9):1225-36. https://doi.org/10.5194/
wes-3-1225-2020.

Zhang S, Gao X, Lin J, Xu S, Zhu X, Sun H, et al. Discussion on the spatial-temporal
inhomogeneity characteristic of horizontal-axis wind turbine’'s wake and
improvement of four typical wake models. J Wind Eng Ind Aerodyn 2023;236:
105368, https://doi.org/10.1016/).jweia.2023.105368,

Wei H, Zhao Z, Liu Y, Liu Y, Ali K, Liu H, et al. Development and validation of a
three-dimensional wind-turbine wake model based on high-order Gaussian
function. Ocean Eng 2024;312:119133. https://doiorg/10.1016/].
oceaneng.2024.119133,

Keane A, Aguirre PEO, Ferchland H, Gallacher D. An analytical model for a full
wind turbine wake. J Phys Conf Ser 2016;753:032039. https://doi.org/10.1088/
1742-6596,/753/3/032039.

Schreiber J, Balbaa A, Bottasso CL. Brief communication: A double-Gaussian wake
model. Wind Energy Science 2020;5:237-44. https://doi.org/10.5194/wes-5-237-
2020.

Keane A. Advancement of an analytical double-Gaussian full wind turbine wake
model. Renew Energy 2021;171:687-708. https://dol.org/10.1016/].
renene.2021.02.078.

S QMB, Yoshinaga T, lida A. Anisotropic double-Gaussian analytical wake
model for an isolated horizontal-axis wind turbine. Energy Sci Eng 2022;10:
212345, htips://doi.org/10.1002/ese3.1120.

Zengler CP, Braunbehrens R, Tamaro S. Further improvements to the double-
Gaussian wake model. J Phys Conf Ser 2024,2767:092066. hitps://doi.org/
10.1088/1742-6596/2767 /9/09200606.

Bourhis M, Buxton ORH. Influence of fr turbul and p ity on porous
disk-generated wakes. Phys Rev Fluids 2024;9:124501. https://doi.org/10.1103/
PhysRevFluids.9.124501.

Vahidi D, Porté-Agel F. Influence of thrust coefficient on the wake of a wind
turbine: A numerical and analytical study. Renew Energy 2025;240:122194,
https://doi.org/10.1016/J.RENENE.2024.122194,

Smagorinsky J. General circulation experiments with the primitive equations. Mon
Weather Rev 1963;91:99-164. htips://doi.org/10.1175/1520-0493(1963)
091<0099:GCEWTP>2.3.C0;2.

Fluent. ANSYS Fluent theory guide. Ansys Inc.; 2021,

Burton T, Sharpe D, Jenkins N, Bossanyi E. Wind Energy Handbook. 2nd ed. Wiley;
2011,

Foti D, Yang X, Shen L, Sotiropoulos F. Effect of wind turbine nacelle on turbine
wake dynamics in large wind farms. J Fluid Mech 2019;869:1-26. hitps://doiorg/
10.1017/jfm.2019.206.

Abraham A, Dasari T, Hong J. Effect of turbine nacelle and tower on the near wake
of a utility-scale wind turbine. J Wind Eng Ind Aerodyn 2019;193:103981. https://
doi.org/10.1016/J.JWEIA.2019.103981.

Neunaber 1, Hilling M, Stevens RJAM, Schepers G, Peinke J. Distinct turbulent
regions in the wake of a wind turbine and their inflow-dependent locations: The
creation of a wake map. Energies 2020;13:5392, htips://doi.org/10.3390/
EN13205392.

MATLAB. Inc. M. 2019,

Yoshida S, Kiyoki 5. Load equivalent tower shadow modeling for downwind
turbines. Wind Energy (Japanese) 2007;31:77-85. https://doi.org/10.11333/
JWEA1977.31.4.77.

Goit JP, Yamaguchi A, Ishihara T. Measurement and prediction of wind fields at an
offshore site by scanning doppler LiDAR and WRF. Atmosphere 2020;11(4):442.
https://doi.org/10.3390/ATMOS11050442,

Gao X, Zhang S, Li L, Xu 5, Chen Y, Zhu X, et al. Quantification of 3D
spatiotemporal inhomogeneity for wake characteristics with validations from field
measurement and wind tunnel test. Energy 2022;254:124277. hitps://doi.org/
10.1016/j.energy.2022.124277,

CL-Windcon. Research Data. http://www.clwindcon.eu/research-data/; 2019,
accessed on 13 February 2025,

Qian GW, Ishihara T. Wind farm power maximization through wake steering with a
new multiple wake model for prediction of turbulence intensity. Energy 2021;220:
119680. https://doi.org/10.1016/j.energy.2020.119680.

Wu YT, Porté-Agel F. Modeling turbine wakes and power losses within a wind farm
using LES: An application to the Horns Rev offshore wind farm. Renew Energy
2015;75:945-55. https://doi.org/10.1016/j.renene.2014.06.019,




