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Abstract. In Japan, most offshore promotion areas for bottom-fixed wind turbines are in near-
shore areas, where offshore wind speeds are not uniform. The dual-scanning LiDAR system
(DSL), which is a remote-sensing technology, is widely used to measure the mean wind speed,
wind direction, and turbulence for resource and site assessments. However, the availability of
DSL data tends to be lower than the key performance indicators proposed in the Carbon Trust in
Offshore Wind Accelerator project owing to the characteristics of DSL. Missing observed data
can be predicted using the measure—correlate—predict (MCP) method, and the uncertainty of the
MCP method can be examined using a prediction function. However, a method to evaluate the
accuracy of the final dataset comprising observed data and data predicted by the MCP method is
yet to be devised. In this study, a set of formulas is proposed to evaluate the accuracy of indices,
such as the coefficient of determination, slope, and offset of linear regression, for a partially
complemented dataset using the MCP method. The proposed formulas are validated against on-
site measurements.

1. Introduction
Offshore wind energy is garnering considerable attention to realize a sustainable society. In wind-energy
projects, on-site measurements are conducted to assess the amount of resources and ensure the suitability
of site conditions for wind turbines. Therefore, highly accurate and reliable measurements under severe
offshore environments must be conducted.

Three primary technologies are used to measure offshore wind, as shown in table 1. One is to install
a bottom-fixed platform in shallow water and set a met mast or vertical LIDAR (VL) on it. The accuracy
and reliability of measurements achieved using the met mast and VL have been proven in the field of
onshore wind energy. Anemometers attached on the mast were shown to be affected by the flow
distortion around the mast, thus necessitating the appropriate corrections [1]. Meanwhile, floating
LiDAR systems (FLSs) are widely used in deep water [2]. Compared with the case of met masts, the
installation of FLSs is relatively inexpensive; however, the turbulence intensity observed by FLSs is
contaminated by the motion of the floater due to wind and waves and must be corrected by applying
motion compensation [3]. For VL measurements, the data availability tends to decrease as the
measurement-height increases [4]. Furthermore, the measurements overestimated the turbulence
intensity [5]. Additionally, these two methods require regular maintenance at sea, thus rendering access
difficult if equipment issues occur and reducing data availability owing to long downtimes during stormy
weather [6]. The third method is remote sensing from land using scanning LiDAR (SL), either
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Table 1. Offshore wind measurement technologies.

Platform Bottom fixed Floating Onshore
Type of LIDAR VL VL SSL DSL
Wind speed om OB om o®
Turbulence om A BLB] X om
Post-processed data availability >95%M  >85~90% M1 >90%T >80 %%
References Ishiharaet al. [1]  Yamaguchi and Ishihara [3] Mano et al. [7] Watanabe et al. [8]

Abbreviations VL: Vertical LIDAR. SSL: Single Scanning LiDAR. DSL: Dual Scanning LiDAR
Symbols O: Applicable. /\: Applicable with motion compensations. X : Inapplicable.

Table 2. KPIs for accuracy assessment of LIDAR system [11].

Acceptance criteria Wind speed Wind direction
Slope R? Slope Offset R?
Minimum 0.97-1.03 >0.97 0.95-1.05 £10° >0.95
Best practice 0.98-1.02 >0.98 0.97-1.03 £5° >0.97

Table 3. KPIs for reliability assessment of LiDAR system [11].

Stage System data availability Post-processed data availability
Monthly Overall Monthly Overall
Pre-commercial =90 % =95 % =80% =85%
Commercial =95 % =97 % =85 % =90 %

single-scanning LiDAR (SSL) [7] or dual-scanning LiDAR (DSL) [8]. Studies showed that using a SSL
system in the PPI and RHI modes does not allow one to measure the turbulence intensity owing to the
low sampling rate [9]. By contrast, when the mean wind direction is parallel to the scanning beam
and a fixed line-of-sight (LoS) scanning mode is used, SSL systems can be used to measure the
turbulence intensity [10].

In Japan, most offshore promotion areas for bottom-fixed wind turbines are in near-shore areas,
where the offshore wind speeds are not uniform owing to uneven topography and rapid changes in the
land surface roughness. DSL systems are widely used to measure the mean wind speed, direction, and
turbulence. The availability of SL data decreases as the measurement distance increases. In particular,
DSL calculates the mean wind speed and wind direction from two LoS wind speeds. The data are loose
if one wind speed is available and the other is not. The data availability of DSL may be lower than that
of SSL. Additionally, the data availability of LIDAR is adversely affected by atmospheric conditions,
such as rainfall, snowfall, and fog, as well as low aerosol concentrations. Thus, the data availability of
DSL tends to be lower than the criteria proposed in the Carbon Trust in Offshore Wind Accelerator
project to determine whether the key performance indicators (KPIs) defined in [11] are satisfied.
Therefore, to achieve high data availability, the missing data must be complemented using the measure—
correlate—predict (MCP) method, which predicts missing data based on the correlation with nearby wind
measurements. The uncertainty of the MCP method can be examined using the constructed prediction
functions. However, a method to evaluate the final dataset comprising observed data and data predicted
by the MCP method is yet to be devised.

In this study, a set of formulas is proposed to evaluate the KPIs, such as the coefficient of
determination (R?), slope, and offset of linear regression, for the partially complemented dataset using
the MCP method presented in section 2. Subsequently, it is validated based on on-site measurements
presented in section 3. The conclusions are summarized in section 4.
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Figure 1. Definition of variables, symbols, and periods used in current study.

2. Methodology

2.1. KPIs for wind-speed and wind-direction measurements using remote-sensing devices

To evaluate the accuracy and reliability of wind speed and direction measured using a remote-sensing
device (RSD), such as VL, FLSs, and SL, a KPI-based assessment proposed by the Carbon Trust [11]
is typically used. Measurements obtained using RSDs are compared with those obtained using pre-
calibrated instruments. The KPIs and related acceptance criteria are presented in table 2. The accuracy
of the RSD is evaluated based on the KPI, such as the slope, offset, and R? of the regression line. The
reliability of the observation system, such as system availability before post-processing and the data
availability after post-processing, is evaluated based on the KPIs, as shown in table 3. At the “pre-
commercial” stage, an RSD must satisfy the “minimum™ accuracy criterion at the least, whereas at the
“commercial” stage, the RSD must satisfy the “best practice™ accuracy criterion. However, wind-speed
measurements performed using a DSL system are more likely to have missing data than those performed
using a met mast or VL. Complementation with the MCP method is necessary to satisfy the KPIs of data
availability. Therefore, the final dataset comprising the observed data and data predicted by the MCP
method must be evaluated.

2.2. Mean value and standard deviation considering data availability

Observations with missing data are generally complemented with nearby observations using the MCP
method. The final dataset obtained through observations comprises data measured during the available
period and data predicted using the MCP method during the missing period. This section describes the
derivation of the formulas for evaluating the final dataset.

Figure 1 presents the definitions of the variables, symbols, and periods used in this study. The
maximum value of index j representing the observation period Y is defined as M. Values from 1 to m
represent missing data, and those from m to M represent available data. Where appropriate, the variables
are denoted by “prime” for missing periods and “double prime” for available periods. The missing data
are complemented with nearby observations. We assumed that the R2, slope, offset, and other statistical
indices during the missing period can be represented by the indicators of the dataset used to construct
the MCP method.

If the availability of the reference data to complement missing data is 100 %, then the mean and
standard deviation of the final dataset are derived as a function of the data availability of the observations.
Hence, the mean value can be expressed as follows:

V=D v M =(M=mM Yy (M=) mMTY "y (1

= m+]

By substituting the value y' =y, , = fiip (P") predicted by the MCP method as an approximate
value for the missing period and using the data availability £(m / M =1 - &), the following equation is
obtained:
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Y = Ve =6V + (1= ()

where y" is the mean value over the available period, and y; , is the mean value predicted by the MCP
method over the missing period.
In this study, the standard deviation o, is defined as the square root of the variance 0'3 as follows:

ol =M"Y" (-7 (3)
By substituting the mean value y obtained using equation (2) into equation (3), o, is rewritten as:

oy =M"" ((y,, I R AN ) IR VR DN (CURS 1 PR (B e TN ¥

j—— —_2 —n—t —f =t

=(1- C:)(y _ZYYPmJ"')’PmJ) (1-8)<X2y"y znymd+med V" )+C:O-

f

4

p—

Since y, in the missing period is unknown, 3 =3/, ., y* =y; ., and 0';_3 = o}, are applied.
02 =02y =(1- )0y + L= )T~ Tiny) +C0T 5)

The ratio of the predicted value to the observed value decreases as the data availability {increases.

2.3. R?considering data availability
The R* of a regression equation for dataset (yy,., ,»»,) (i = 1...n) is expressed as

R’ =ESS/TSS=1-RSS/TSS, (6)

where the total sum of squares TSS = =/(y, —¥)* comprises the explained sum of squares ESS =
2 (Vema s —») » Which can be estimated using the regression equation, and the residual sum of squares
RSS = =7y, = Yuu ,)* - ¥ and y,. denote mean and predicted values of ), respectively. The
regression equation for the available period is y,, , = v, and the following holds:

M
Z.!=m+l(y.f ~ V¥inal, j )2 =0. (7
R, predicted in the available period is expressed as
Rip =1=2 0= Vo)) Do sV = Fea) (8)

Assuming that the RSS/TSS ratio in the construction period is equal to that in the prediction period,
the following equation is derived:

IR CTER NS SR ¢ RS T S DN AN o) SN CURSS 74 S O

Using equations (7) and (9), the R, of the final dataset can be transformed as follows:

2

L > Vo) m2 (y,-—?;md)ﬁn“zj”,,m(y-—ymr
- >, - MY 3, = MY (5 =T

Subsequently, R

2

(10)

is expressed as a function of data availability £ using equation (8) as follows:

Ry =1-(1-8)0pe0 (1= Ryp)- (11)

A\all
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Because o,,,0,” is almost equal to 1, the R? of the final dataset is expressed as

A\aﬂ (l_é‘)(l \I(_P)‘ (12)

The R;_, of the final dataset depends on the data availability ¢ and R;,., obtained via the MCP

Avail
method.

2.4. Slope and offset considering data availability

The slope and offset are derived while considering data availability. The regression equation for the KPI
evaluation is ¥y =, Vena + Bran - 1he RSS of the final dataset and the dataset of actual values is
expressed as

M 2
RSS= Z_m (V) = CavaitVinal; — Baair) - (13)
. and B, . are expressed as shown in [12] by minimizing the RSS.
_ Z,U - = /Z,‘lf - 2 14
aA\-aiI | (yl~'ir1al,j y]-'inal )(y; y) j=1 (yi-'inal__;' yl"inal) ( )
ﬁ)\\ail =y _a.a\\»ailJ_’FinaJ (15)

@, can be simplified using o} = oy, =27 Wy, — V) M~ > equation (2), and 3 =37, .

a;\vail M O.;j'lal ZT ][(yl’red. i ?'I’red)(y;' _;, I’red) + gz ()7" j_')'l’red )2 :| +

Mo FmaJ = ,,,,J:(J”Pred i J/med)(}", ?I:red )+(1-& )2@;@ _J_')’P‘red )ZJ
= (l - C:)CE: Final (}-_:rzglj'i:;lal + ga;,l‘inal 0'_:2()';13'“' + (1 C:)C:(y Y Pred) JI Final (l 6)

a: rinal 10 the first term is the slope of the regression line during the missing period and is unavailable;
the slope of the regression line «,,., is used for &, ., . In the available period, the regression line is
Y= Vg » a0d @) gy in the second term is 1. Thus, &, is expressed as

A pvait = -(- g)(] Ayicp )O-Pred O-Fmal (l 7)
By assuming that OOy is almost equal to 1, .. 18 simplified as
X pvail = =)= ayiep) (18)

Equation (18) is only used for evaluating the wind speed, where linear regression without offset is
used. Subsequently, £, .. can be obtained as follows:

Baair =¥ — UV = (1= U )V = (1= 1 = @yep)V =y 3" (1 =)'~ 2y ¥ > (19)
where the relationship between y =y, ., and equation (18) is used. As S, =7 — &yepTpea aNd

V' =Vpa=Y  Pua isderived as

JBA\-ajl = (1 - g)ﬁl\-l(‘P . (20)

In this study, «, ., and S, ., are evaluated using equations (18) and (20), respectively.
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Figure 2. Measurement site information. (a) Topography and (b) met mast and vertical LIDAR

Table 4. Summary of on-site measurements.

Location N 40.05025 °, E 139.93232 °
Measured items Mean and standard deviation of wind speed and mean direction in 10 minutes
Observation Met mast Vertical LIDAR
Instruments  Anemometer (NRG Classl). Vane (NRG 200M)  Vertical LiDAR (Leosphere Wind Cube V2)
Heights 58m (Wind speed), 50m (Direction) 40/50/58/70/90/110/130/140/150/170/190m
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Figure 3. Comparison of (a) mean wind speed at 58 m and (b) wind direction at 50 m obtained from
met mast and VL.

3. Results and discussions

3.1. On-site measurements for verification

Figure 2 and table 4 show an overview of the on-site measurements using the VL and met mast. The
location is approximately 150 m inland from the Sea of Japan coastline in Akita Prefecture. During one
year of observation, the VL showed good agreement with the met mast at a horizontal distance of 15 m.
The correlation between the VL and mast is shown in figure 3. The tower complies with IEC61400-50-
1 and was equipped with two anemometers at the top, thus eliminating the shadow effect via the
appropriate selection of an anemometer based on the wind direction.
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Table S. Statistics of wind data at different heights against at target height 58 m.

Height  Availability Mean speed Mean direction Standard deviation
[m] [%] Slope R Slope Offset R? Slope R
190 96.44 1.094 0.866 0.927 21.65 0.937 1.013 0.786
150 98.33 1.077 0.913 0.953 14.11 0.965 1.002 0.849
90 99.16 1.038 0.981 0.983 5.30 0.994 1.003 0.942
58 99.21 1.000 1.000 1.000 0.00 1.000 1.000 1.000

Time series of wind speed and direction

10
Available
=] 5
Missing
0
Segment
10 cases of 10 %" @
g 4@
availability :
©)
10
10 cases of 50 % _E})

availability

®
@0

Figure 4. Examples of data segmentation for validation.

In this study, the data observed at 58 m by the VL is regarded as the actual values. The data obtained
at 90, 150, and 190 m are used as reference data for complementation. Table 5 shows the annual data
availability and the statistical indices of the reference data against the data at 58 m. The statistical indices
deviate from perfect agreement as the altitude of the reference data increases.

3.2. Evaluation of mean value and standard deviation
To examine the applicability of the proposed formulas to various data availabilities and the statistical
properties of complementation, the following data are prepared. Figure 4 shows the configuration of the
available data for 10 % and 50 % availabilities. The time-series data at 58 m are partitioned into 10
segments. A unit segment accounts for 10 % of the total data and the availability of each case is set to n
x10 % (n = 1...9). Consecutive intervals are regarded as available intervals and are represented by
shaded areas, as shown in figure 4. The start and end of the interval are treated consecutively, and the
number of cases for each data availability is maintained at 10. Because the extracted intervals
corresponded to the available period, the observed data at 58 m and the reference data at each altitude
in these intervals are used to construct a prediction model for the MCP method. The data predicted by
the MCP method are used for the missing intervals in the final dataset. The observed data are used
directly for available intervals. Finally, the R?, «, and £ values of the final dataset are calculated and
compared with those evaluated using the proposed formulas.

Linear regression using the MCP method, as expressed in equation (21), is performed to predict the
mean wind speed U. The bias correction method, as expressed in equation (22), is adopted for the mean
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Figure 6. Relative mean errors of final dataset against actual value. (a) Annual mean and (b) annual

standard deviation for mean wind speed.
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Figure 7. Relative mean errors of final dataset against actual value. (a) Annual mean and (b) annual
standard deviation for standard deviation of 10-min wind speed. Legend shown in figure 6 is adopted.

wind direction &, whereas the double-bias correction method, as expressed in equation (23), is employed
for the standard deviation o

Uy = a(6,)U, +b(6},)

7

Opreg = C(HI’ )T +d(9|’)

et = Op +A0(6;)

21)
(22)
(23)
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Figure 8. R’ and slope of time series (symbols) and estimations by proposed formulas (lines) for mean
wind speed. (a)-(c) evaluation of R*; (d)-(f) slope. Left column shows data at 190 m obtained using
MCP method, middle and right columns present data at 150 and 90 m, respectively.

where the subscripts Pred and P denote the predicted and observed values, respectively. The
coefficients a, b, ¢, d, and A@ in equations (21)~(23) are estimated for each of the 16 wind directions
during the available period. The coefficients for wind direction are interpolated from the coefficients
for adjacent wind directions. In practice, multiple reference observations may be available
simultaneously; however, the proposed formulas can be applied using an approach similar to the MCP
method for multiple wind directions.

The annual mean and standard deviation estimated using equations (2) and (5) are compared with
those calculated directly from the time series. The estimated annual standard deviation, as shown in
figure 5, agrees well with the observed standard deviation. The annual mean and standard deviation of
wind speed of the final dataset are compared with actual values, and the relative error as a function of
data availability is shown in figures 6 and 7. For 10 % availability, the median as well as the minimum
and maximum ranges of the relative error against the observation at 58 m are shown by lines. The
predictions with high availability agree well with the measurements. However, when the availability is
low, the error in the final dataset varies significantly, depending on the configuration of the missing
period. For a specific availability, the closer the reference altitude is to 58 m, the more accurate is the
dataset because the reference data are more correlated with the data at 58 m.

3.3. Verification of proposed formulas

The R’, slope, and offset calculated from the predicted and actual values are compared with the Ravail,
Cavail, and Bavail evaluated using equations (12), (18), and (20), respectively, for the mean wind speed
(see figure 8) and mean wind direction (see figure 9). For each availability, the values of Ravail, @avail,
and Bavail predicted by the proposed formulas are shown as lines connecting the median, 25 % and 75 %
quantiles, and the minimum and maximum values.

The actual distribution of R with respect to the mean wind speed shows a higher degree of scatter as
the reference altitude increases, as shown in figures 8 (a)—(c). Similarly, the proposed formulas exhibit
a higher degree of scatter compare with the actual distribution. In case (c), the errors in the estimated
mean and standard deviation are small, as shown in figure 6; therefore, the actual and predicted values
match well. This is because if the correlation between the reference and observed data is high, then the
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Figure 9. R°, slope and offset of time series (symbols) and estimations by proposed formulas (lines) for
mean wind direction. (a)-(c) evaluation of R*; (d)-(f) slope; (g)-(i) offset. Left column shows data at 190
m obtained using MCP method, middle and right column present 150 m and 90 m, respectively.

assumptions used to derive the proposed formulas are valid. The slope for wind speed is shown in figures
8 (d)—(f). Because the prediction function shown in equation (21) is based on the least-squares method,
ancp is approximately 1 in each wind direction. Therefore, the results obtained using equation (18) tend
to show a value of approximately 1. The actual « is scattered, as shown in figure 8, when the data
availability is low, whereas it converges to the value predicted by the proposed formula when the data
availability is high.

Figures 9 (a)—(i) show R* with respect to the mean wind direction. Compared with the wind speed,
the evaluated values agree well with the actual values at any reference altitude. This is because the
correlation of the wind direction at each reference altitude is higher than that of the wind speed, as listed
in table 5. As shown in figures 9 (d)—(i), « and S exhibit a high degree of scatter when data availability
is low, whereas their degree of scatter decreases as data availability increases. The slope predicted by
the proposed formula becomes more accurate as the correlation between the reference and observed data
at 58 m increases. Similar to the slope, the offset predicted by the proposed formula deviates less from
the actual value when the data availability is low; however, as the data availability approaches 100 %,
the predicted value approaches the actual value.

Finally, the bin method is used to examine the certainty of the proposed formulas by analyzing the
difference between the actual and predicted values. The 99% quantile is calculated by assuming that the
bin differences follow a normal distribution. Two-sided 99% quantiles are used for the slope and offset.
Only the lower side is considered for R>. When the data availability exceeds 40 %, the null hypothesis
of normality for the frequency distribution of the differences is rejected in the ;7 test at a significance

10
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Table 6. Certainity of KPIs estimatied using proposed equation.

(a) Wind speed (b) Wind direction
Accuracy Best Practice Minimum Accuracy Best Practice Minimum
KPI R*>0.98 R*>097 KPI R*>0.97 R >0.95
L% 40 50 60 70 80 90 40 50 60 70 80 90 £[%] 40 50 60 70 80 90 40 50 60 70 80 90
0.965 r 0965 D
3 0,975 2 0.975
R T Rver —Gogs
0,995 0.995
K Pl a:0.98~1.02 @ :0.97~1.03 KPI a:0.97~1.03 @ 0.95~1.05
£[%) 40 50 60 70 80 90 40 50 60 70 80 90 L% 40 50 60 70 80 90 40 50 60 70 80 90
0.9875 0.9875 -
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amer 9975 Aer 09975
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. KPI p-5~+5 B -10~+10
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D Predictive (> 99 % reliablility) B
P 1
. Less predictive (< 99 % reliablility) b_

level of 99.99 %. In this study, a KPI is defined as highly predictive if the 99 % quantile of predicted
values within a bin satisfies the set criteria.

Table 6 shows that when the data availability exceeds 60 % for both the wind speed and direction,
the confidence interval of the result is 99 % and the final dataset is accurately evaluated by the proposed
formulas.

4. Conclusions

In this study, formulas for evaluating the R, slope, and offset of the final dataset after complementation
using the MCP method are proposed by considering the data availability of observations. The proposed
formulas are then validated against on-site measurements. Formulas for the mean and standard deviation
of the post-completion data are derived to account for data availability. Results show that the final
dataset is accurately evaluated using the proposed formulas when the availability exceeded 60 % for
both the wind speed and direction. Verification against on-site measurements shows that when the data
availability of the dataset before complementation is high or when the correlation between the reference
data for complementation and the target dataset is high, the KPIs of the final dataset partially
complemented by the MCP method is accurately evaluated by the proposed formulas.
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