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Effect of heave plates and nonlinear mooring

Floating Offshore Wind Turbine System (FOWTS) Is
made of light materials compared to conventional

The experimental model was tested without (D=8m)
and with heave plates (D=12m,16m).
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Non-hydrostatic restoring force

fR‘NHM = Kg (X-)
where 77 Is the wave height.

the resonance peak to longer period.

« Simulation results showed small nonlinearity in tension
legged mooring. However, the linear model
overestimated the surge for catenary mooring due to
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» Seabed contact force for nonlinear catenary mooring 0
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