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1. Introduction  

Wake flow causes problems such as reduced power 

generation and increased fatigue loads in downstream wind 

turbines. It is important to develop analytical models that 

allow fast and accurate prediction of power production in 

large wind farms. In previous research, wake deflection was 

evaluated using single Gaussian wake models which only 

focused on far wake prediction and ignored the double-peak 

wake deficit in the near wake region. This results in the 

inability of single Gaussian models to accurately predict 

wake deficit in the near wake region
1)
, and makes traditional 

wake models difficult to accurately evaluate the wake of 

wind turbines in wind farms with dense layouts and narrow 

wind turbine spacing, such as some onshore wind farms in 

Japan, where 2D spacing are frequently observed.  

In this study, an analytical wake model to predict both near 

and far wake deflection is derived from a double-Gaussian 

wake model which improve near wake accuracy. The 

proposed analytical model is then validated by numerical 

simulations. 

2. A new analytical model for yawed wind turbine 

 
Figure 1. Schematic of the momentum conservation-based 

model for the wake deflection 

The fully developed wake flow behind wind turbines has 

been investigated for decades. In the previous study, the 

assumption of axisymmetric and the self-similar distribution 

for the velocity deficit in the far wake region were inherited. 

In this study, the double Gaussian shaped velocity deficit is 

adopted together with the momentum conservation 

streamwise and spanwise to derive an analytical deflection 

model.  

Figure 1 shows the schematic of of the momentum 

conservation-based model for the wake deflection. In control 

volume, since they're only rotor thrust force 𝑭 acts as the 

external force, the governing equations can be established by 

the steady-state form of the NS equation as: 
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where 𝑢𝑤 donate wake velocity, 𝑢0 represent freestream 

wind speed. The turbine-induced force 𝐹 exerting on the 

control volume can be expressed by the following equation: 

𝑭 = −
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𝐶𝑇𝜌𝐴0(𝑢0
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where 𝐶𝑇  represents the thrust coefficient of the wind 

turbine, 𝛾 is the yaw misalignment, 𝐴0 donate the rotor 

area of the wind turbine. Equation (3) can be then divided 

into Equations (4) and (5) in the streamwise and spanwise  

directions as: 
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Following the self-similarity assumption, the velocity in 

the wake region can also be decomposed into streamwise 

and spanwise components respectively, where a double 

Gaussian shape function for the spanwise profile is used: 
𝑢𝑤(𝑥, 𝑟) = 𝑢0(1 − 𝐹(𝑥)𝜑(𝑟)) (6) 
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2𝜎2
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where 𝑟  is the radius away from the trajectory line 

spanwise, 𝑟𝑚𝑖𝑛 represents the distance of the center offset 

of double Gaussian distribution.
2)
 Substitute equation (6) 

back to Equation (4) and adopt a double Gaussian shape 

function, the following relation can be derived by 

considering second order Taylor expansion: 
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where 𝐶𝑇
′ = 𝐶𝑇 cos3 𝛾, M and N can be expressed as: 
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In addition, as the double Gaussian distributions in the 

neighborhood converge into one to the far side, the radial 

peak position 𝑟𝑚𝑖𝑛 is modeled using the following equation: 
𝑟𝑚𝑖𝑛

𝑅
=

𝑟0

2𝑅
(1 − erf (

𝑥 − 𝑥0

√2𝑚𝐷
))   (11) 

where 𝑅 is the rotor radius. In streamwise, linear wake 

expansion is assumed, thus 𝜎 can be expressed as: 
𝜎 = 𝑘∗𝑥 + 𝜖𝐷 (12) 

where 𝜖 = (1/2 − 𝑟0/𝐷)/3 , 𝑘∗  is modeled using a 

function of 𝐶𝑇 and 𝐼𝑎. Parameters of proposed formulas 

are then identified based on the results of numerical 

simulations using the Genetic Algorithm by Ishihara & 

Qian
2)
 as: 

𝑟0 = 0.52𝑅 

𝑚 = 4.0 

𝑥0 = 3𝐶𝑇
0.65𝐼𝑎

−0.31𝐷 

𝑘∗ = 0.11𝐶𝑇
0.65𝐼𝑎

0.27 

(13) 

(14) 

(15) 

(16) 

Since the skew of wake trajectory is small, the 

approximation of sin 𝜃 ≈ 𝜃is adopted for simplification. 

Then spanwise function (5) can be rewritten as: 

𝜃 =

1
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Assume the wake radius as 𝑅𝑤 = 𝐷𝑤/2 = 𝑆𝑑𝜎, then 

the integration part of the denominator of equation (17) can 

be expressed as: 
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In previous study, Qian & Ishihara
3)
 suggested using 

scaling factor 𝑆𝑑 = 2√2 ln 2 . In this study, the scaling 

factor 𝑆𝑑 = 3.75√2 ln 2  is used to obtain reasonable 

deflection that best fits the experimental data. 

By substituting equation (7) and equation (8) into (18), the 

expression of skew angle can be finally derived as: 
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where 𝑎 = 0.5𝜎2 for simplification. Since it is not able to 

find an analytical solution for equation (19), wake deflection 

𝑦𝑑(𝑥) is integrated numerically as: 
𝑦𝑑(𝑥)

𝐷
=

1

𝐷
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𝑥

0
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3. Model validation 

A numerical simulation
3)
 with 𝐶𝑇 = 0.84 and  𝐼𝑎 =

3.5% in 8° and 16° yaw misalignments are conducted to 

validate the proposed analytical model. As shown in Figure 2, 

the proposed model not only accurately predicts the 

double-peak shaped horizontal wake profile in the near weak 

region, but also shows better performance in the far wake 

region. In terms of yaw deflection, the proposed model 

shows better agreement in the near wake region, while the 

single Gaussian weak model underestimates the deflection in 

the near wake region. 

 
Figure 2. Comparison of the predicted distribution of 

mean wind speed in the wake (a) 𝛾 = 8°, (b) 𝛾 = 16° 

In terms of wind power prediction for downstream wind 

turbines based on rotor-averaged wind speed �̅�𝑟𝑜𝑡 , the 

proposed model also shows better performance in both near 

and far wake regions in comparison with exists model as 

shown in Figure 3. 

 
Figure 3. Downstream wind power production in the wake 

of a wind turbine 

4. Conclusion 

In this study the following conclusions are obtained: 

(1) A new analytical wake deflection formula is proposed 

based on a double-Gaussian wake model.  

(2) Proposed analytical model is validated by numerical 

simulation and shows favorable accuracy in the near and far 

wake regions. 
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