洋上風力発電ジャケット基礎の地震応答解析 ~その1 逸散減衰効果の検証~

電源開発(株)	正会員	司吉○	贸健,	石尾	将大
(株)構造計画研究所	正会員	正月	俊行,	内山	不二男
東京大学	正会員	石原	孟		

1. はじめに

我が国への導入が期待されている洋上風力発電では近年,風車の大型化が目覚ましく、これに伴い支持構造物の設計において極稀地震時の応答が支配的となり得る.地震応答低減のためには地盤の減衰効果を最大限考慮したいが、土木学会指針¹⁾では全体1次固有振動数 f_i が地盤の1次固有振動数 f_g よりも小さい場合、1次応答には地盤の逸散減衰を考慮しない規定であることに留意が必要である. 大型洋上風車の場合は f_i が小さくなるため、ほとんどの地点で $f_1 \leq f_g$ に当てはまるものと考えられる.

そこで本研究その1では10MW 級風車のジャケット基礎 を対象として、2次モード以上にのみ逸散減衰を簡易に考 慮できる設定方法を検証する.

2. 減衰特性の比較

まず図1に示すジャケット基礎とモノパイル基礎の解析モ デルを用い,逸散減衰あり/なしの影響を比較する.構造 減衰は0.2%とし,杭部分は地盤のばねとダッシュポットを有 するWinkler モデルとしている.逸散減衰ありの場合は,ダ ッシュポットに地盤の材料+履歴減衰項に加え,指針式 (Gazetas 式)による逸散減衰項を加える.図2は,全体1次 固有周期 T_1 の正弦波加振後に自由減衰振動を生じさせた 解析結果である.これより,ジャケット基礎は逸散減衰が寄 与していないが,モノパイル基礎は逸散減衰によって1次 モード減衰比 ζ_1 が有意に増加していることがわかる.

このことは, Ishihara and Wang²が重力式基礎とモノパイ ル基礎の応答特性の考察に用いた AIJ 理論式(1)からも説 明できる.

$$\zeta_1 = \zeta_{struc,1st} \left(\frac{T_{struc,1st}}{T_1}\right)^3 + \zeta_s \left(\frac{T_s}{T_1}\right)^3 + \zeta_R \left(\frac{T_R}{T_1}\right)^3 \tag{1}$$

すなわち,ジャケット基礎の場合は軸力に変換され杭頭変 位が小さいためロッキング成分が寄与しないが,モノパイル 基礎の場合は杭頭変位が大きくロッキング成分が寄与する ため,1 次モードにも逸散減衰効果が表れている(**表 1**).

3. 簡易設定法の検証

ここで示す簡易設定法は Wang and Ishihara^{3)が地盤}の初 期減衰(材料減衰)を考慮するために用いた手法であり、こ れを地盤の履歴減衰に応用する. その設定フローは以下の 通りである.

- ① 逸散減衰係数は指針式(Gazetas 式)より算定する.
- ② 2次モードの自由減衰振動解析を実施し、逸散減衰の あり/なしによるモード減衰比の増加分αを評価する.

図1 解析モデル

図21次モードの自由減衰振動解析結果

表1 AIJ 理論式による1次モード減衰の成分分解結果

			1次モード減衰比	構造成分	スウェイ成分	ロッキング成分
			ζı	$\xi_{f} * (T_{f}/T_{1})^{3}$	$\xi_{\rm S} * (T_{\rm S}/T_{\rm 1})^3$	$\xi_{R} * (T_{R}/T_{1})^{3}$
ジャケット 基礎	逸散減衰 なし	成分分解(%)	0.20	0.19	0.00	0.01
		寄与率		96%	0%	4%
	逸散減衰 あり	成分分解(%)	0.21	0.19	0.00	0.02
		寄与率		92%	0%	8%
モノパイル 基礎 逸	逸散減衰 なし	成分分解(%)	0.22	0.18	0.00	0.04
		寄与率		83%	0%	17%
	逸散減衰 あり	成分分解(%)	0.33	0.18	0.01	0.14
		寄与率		56%	1%	43%

キーワード 洋上風力発電, 地震応答解析, 逸散減衰, レーリー減衰 連絡先 〒104-8165 東京都中央区銀座 6-15-1 電源開発(株) TEL: 03-3546-9665

図32次モードの自由減衰振動解析結果

- ③ 地盤のダッシュポットに設定する減衰係数は,逸散減 衰なしによる値を設定する.すなわち,地盤応答解析 による材料減衰+履歴減衰のみを考慮する.
- ④ 式(2)に示す構造のレーリー減衰評価に用いる 2 次モード減衰比に、②の増加分を加えて算定する.

$$C = a_1[M] + a_2[K]$$
(2)
$$a_1 = \frac{2\omega_1\omega_2(\omega_2\zeta_1 - \omega_1\zeta_2)}{\omega_2^2 - \omega_1^2}, \qquad a_2 = \frac{2(\omega_2\zeta_2 - \omega_1\zeta_1)}{\omega_2^2 - \omega_1^2}$$

すなわち, $\zeta_1 = 0.2\%$, $\zeta_2 = 0.2\% + α$, ω = 2πf

ジャケット基礎を対象に簡易設定法の妥当性を検証する. まず,逸散減衰あり/なしで2次モードの自由減衰振動解 析を実施し,逸散減衰効果による2次モード減衰の増分α は1.32%であることがわかったため,その増分をレーリー減 衰の2次モード減衰に追加し,同様に簡易設定法モデルで も2次の自由減衰振動解析を実施した.その結果,指針式 逸散減衰ありと簡易設定法で概ね同等の2次モード減衰が 得られた(図3).

これらのモデルについて、極稀時のスペクトル適合波のラ ンダム位相, Side-Side 方向加振(解析条件の詳細は研究 その2参照)で地震応答解析を実施した(表2,図4).その結 果,タワー基部曲げモーメントのフーリエスペクトルをみると, 指針式逸散減衰ありと簡易設定法は1次,2次モードは同等 の結果を与えることがわかった.これは地盤バネ・減衰を等 価値で線形化近似していることが要因であると考えられる.

一方で、3次モードでは簡易設定法が指針式逸散減衰あ りよりも若干高い応答を示している(図4).これは簡易設定 法で用いたレーリー減衰では、3次モード減衰を正確に考

表2 地震心谷解析結果の比較							
		1.指針式	2.指針式	2			
		逸散減衰なし	逸散減衰あり	3.間易設定法			
固有振動数(Hz)	f ₁	0.259	0.259	0.259			
	f ₂	2.054	2.054	2.054			
モード減衰(%)	ζ1	0.2	0.2	0.2			
	ζ2	0.2	0.2	1.52			
レーリー減衰	a ₁	0.0058	0.0058	0.0003			
	a ₂	0.0003	0.0003	0.0024			
曲げモーメント最大 (side-side方向) (kNm)	タワートップ	<u>6,369</u>	<u>3,286</u>	<u>3,937</u>			
	タワー高60m	<u>173,326</u>	<u>110,979</u>	<u>126,933</u>			
	タワー高30m	102,174	88,218	87,224			
	タワー基部	357,377	234,932	262,195			

慮していない影響である.本洋上風車の場合,1次モード減 衰が小さいためレーリー減衰はほぼ剛性比例型となり,振 動数に応じて減衰比が線形に増加する.一方で地盤のダッ シュポットで減衰を考慮する場合は,振動数に応じて非線 形に増加する傾向があるためこのような差が生じたものと考 えられる.それでも**表2**からわかるように,簡易設定法は指針 式逸散減衰なしよりもタワー応答が有意に低減し,かつ指 針式逸散減衰ありよりも保守側であることから,実用的であ ると考えられる.

4. まとめ

以上の検証結果より,逸散減衰による2次モード減衰の 増分をレーリー減衰に加えることにより,2次モード以上にの み逸散減衰を考慮できる簡易設定法は実用性があることが 確認された.なお,本簡易設定法はジャケット基礎に限らず, モノパイル基礎にも適用可能である.

本研究にあたり、ひびきウインドエナジー(株)の協力を得た.記して謝意を表する.

参考文献

- 1) 土木学会: 風力発電設備支持物構造設計指針, 2010.
- T. Ishihara, L. Wang: A Study of Modal Damping for Offshore Wind Turbines Considering Soil Properties and Foundation Types, Wind Energy, Vol. 22, Issue 12. pp.1760-1778, 2019.
- 3) L. Wang, T. Ishihara, A study of the effects of foundation uplift on the seismic loading of wind turbine tower and shallow foundation using a new dynamic Winkler model, Engineering Structures, Vol. 219, pp.1-16, 2020.

© Japan Society of Civil Engineers