各種浮体形式の動揺特性に関する研究*

A study of dynamic responses of several floating foundation concepts

菊地由佳^{} 難波治之^{**} 石原孟^{**}** Yuka KIKUCHI Haruyuki NAMBA Takeshi ISHIHARA

1. はじめに

我が国は,洋上風力エネルギーの8割以上の導入ポ テンシャルが水深50~200mの範囲に存在し,浮体式 洋上風力発電の導入が期待されている.

浮体の形式は、安定性確保の手法から、3 つの形式 に大別される.重心を下げることにより浮体の安定を 保つスパー式、水線面積を大きくすることにより浮体 の安定を保つポンツーン式、その組み合わせであるセ ミサブ式である.これらの浮体は、カテナリー係留を 用いているが、緊張係留(TLP)により軽量な浮体を保 持する TLP 式も提案されている.これまでの実証研究 では、2011 年の WindFloat¹⁾および 2013 年の福島浮体 式洋上ウィンドファーム実証研究²⁾においてセミサブ 式が、2009 年の Hywind および 2013 年の GOTO-FOWT 実証研究³⁾においてスパー式が、2015 年に開始した「次 世代浮体式洋上風力発電システム実証研究」において ポンツーン式が採用されている.TLP 式は、実証研究 は行われていないが、東京大学と三井造船⁴⁾による初 期設計の検討がある.

風車-浮体-係留のコストを低減するためには各浮体 の特徴を定量的に評価する必要がある. Carbon Trust⁵⁾ は各種浮体形式の開発状況をまとめ、その特徴を定性 的に述べたが、定量的な比較を行っていない. Jonkman and Matha⁶⁾は動解析により、各浮体形式の動揺特性の比 較を行ったが、浮体モデルは実証されたモデルではな い.また、水深 50~100mの海域において、水深が浅い ほど、係留索に生じる係留力が大きくなるといわれて いるが、この点も実証されたモデルを用いた定量的な 評価は実施されていない.

そこで、本研究では、まず、我が国の実証研究で用 いられた浮体を参考に浮体モデルを作成し、動解析を 実施することにより各種浮体の動揺および係留力の 特性を定量的に評価する.次に、セミサブ式浮体を用 いて異なる水深における浮体動揺と係留索を定量的 に評価する.

〒113-8656 東京都文京区本郷 7-3-1

2. 各種浮体動揺特性の評価

2.1 浮体モデルの作成

各種浮体モデルは実証研究を参照して作成した. 各 種浮体動揺特性の比較を行うため、全ての浮体は 5MW 風車搭載用とし、係留索は共通の仕様とした. セミサブ式は,福島浮体式洋上ウィンドファーム実証 研究²⁾を参照した.実証研究の浮体は 2MW 浮体搭載 用であるため、5 MW 風車の転倒モーメントに耐えら れるように、セミサブコラムの半径を大きくすること により、復元モーメントを増大させた.スパー式は、 GOTO-FOWT 実証研究³⁾を参照した.実証研究の浮体 は 2MW 風車搭載用浮体であるため、スパーの半径を 大きくすることにより、復元モーメントを増大させた. ポンツーン式は,次世代浮体式洋上風力発電システム を参照した.実証研究の浮体は 4.4 MW 風車搭載用浮 体であるため、5 MW 浮体の転倒モーメントに耐えら れるように,ポンツーンの断面を大きくした. TLP 式 は、東京大学と三井造船の共同研究⁴⁾を参照した.共 同研究の浮体は 2.4 MW 風車搭載用の浮体であるため、 サブコラムの半径を大きくすることにより, 復元モー メントを増大させた.

作成した各種浮体モデルの主な諸元を Table 1 に示 す. セミサブ式は, 排水量が大きく, ポンツーン式の 1.45 倍となっている. ポンツーン式は水線二次断面モ ーメントが大きく,セミサブ式の約2倍となっている. TLP 式は浮体の排水量が小さく, 緊張係留を用いてい るため, 係留索が短い. スパー式は, 重心を下げるた め, 浮体が長く, 水線断面二次モーメントが小さい.

	セミサブ	ポンツーン	TLP	スパー
浮体高さ	32 m	11 m	35 m	130 m
最大幅	67.5 m	51 m	67.5 m	9.4 m
喫水	21.3 m	7 m	25 m	120 m
体積	13,084 m ³	9,123 m ³	7,046 m ³	8,029 m ³
排水量*	12,998 ton	8,912 ton	5,102 ton	7,852 ton
水線二次断面 モーメント	146,942 m ⁴	297,431 m ⁴	92,470 m ⁴	88 m ⁴
係留索長	793 m	801 m	127 m	696 m
係留索数	6			

Table 1 各種浮体モデルの諸元

*排水量はバラスト水を含む

^{*} 平成 29 年 12 月 7 日第 39 回風力エネルギー利用シンポジウムにて講演 ** 会員 東京大学大学院工学系研究科社会基盤学専攻

(a) セミサブ式

(b) ポンツーン式

(c) TLP式(d) スパー式Fig.1 設定した浮体モデルの概要

風車モデルには, NREL の 5MW 風車⁷⁾を用い,浮体の傾斜による転倒モーメントに耐えうるように基部の剛性を調整した. 係留索は,6本とし,重量密度は 0.382t/m とした.

2.2 浮体動揺特性の評価

FAST v8.10⁸⁾を用いて,各種浮体の動揺解析を実施 した.動揺解析に用いる流体力は ANSYS AQWA⁹⁾を用 い,ポテンシャル理論により評価した.

まず自由振動解析を実施し、各種浮体の固有周期を 評価した結果を Table 2 に示す. 固有周期 *T* は次式に 示すように、質量 *M* と付加質量 *M*′,剛性 *K* との比に より評価される.剛性 *K* には、係留索による剛性およ び水線断面二次モーメントによる剛性が含まれる.

$$T = 2\pi \sqrt{\frac{M+M'}{K}} \tag{1}$$

Table 1 に示すように、セミサブ式は、重量が大きい ため、サージ方向、スウェイ方向の固有周期が長い. ポンツーン式は水線断面二次モーメントが大きいた め、ヒーブ方向、ピッチ方向の固有周期が短い. TLP 式は係留索の剛性が大きいため、ヒーブ、ピッチ、ロ ール方向の固有周期が非常に短い.スパー式は、水線 断面二次モーメントが小さいため、ヨー方向の固有周 期が短い.

次に,規則波解析を実施し,波高 3m の規則波を作 用させ,各種浮体の周波数応答関数を評価し,Fig. 2 に示す.サージ方向の浮体動揺は各種浮体ともほとん ど変わらない.セミサブ式・スパー式は、ピッチ方向 の固有周期が長く,波の周波数帯と外れているため, ピッチ方向に共振が起きない.一方,ポンツーン式は, ヒーブ,ピッチ方向の固有周期が短いため,波の周波 数帯と重なり,共振が発生し,動揺が大きくなってい る. TLP 式は,緊張係留のため,ヒーブ,ピッチ, 方向の動揺がほとんどみられない.

Table 2 各種浮体の 6 方向の固有周期 (秒)

	セミサブ	ポンツーン	TLP	スパー
サージ	78.6	64.9	52.6	67.2
スウェイ	78.6	65.0	52.6	67.2
ヒーブ	17.2	6.7	1.7	27.6
ロール	22.2	11.4	1.8	35.9
ピッチ	22.3	11.4	1.8	35.9
нЕ	49.3	33.0	38.8	7.9

Fig.2 各種浮体形式の周波数応答関数

暴風時における各種浮体の浮体動揺と係留力を評価するため.福島沖における環境条件を参照し,海象条件は3時間有義波高11.7mと有義波周期13secのPierson-Moskowitz スペクトルに基づく不規則波を作成した.気象条件は50年再現期待風速50m/s,乱流強度0.11,ウィンドシア0.11のKaimalスペクトルに基づく乱流風を作成した.各種浮体動揺の最大値をFig.3に示す.セミサブ式とスパー式はほぼ同じ動揺特性を示すのに対して,ポンツーン式のヒーブとピッチ方向の動揺は大きな値を示す.TLP式は緊張係留のため,ヒーブとピッチ方向の動揺はほとんどない.各種浮体の係留力の最大値をFig.4に示す.ポンツーン式,ス

パー式はセミサブ式とほぼ同様の係留力を示した.ス パー式は係留点が低いため、セミサブ式に比べ、係留 力が小さい.一方、TLP式の係留力はセミサブ式の約 3倍の大きさを示す.

Fig.3 各種浮体の動揺の最大値の比較

Fig.4 各種浮体の係留力の最大値の比較

以上,本解析で評価した各種浮体の動揺特徴をまと める.セミサブ式およびスパー式は,固有周期は波の 周期帯に一致しないため,浮体の動揺が安定である. 一方,ポンツーン式は,固有周期が波の周期帯に一致 するため,浮体のピッチ方向の動揺が大きく,セミサ ブ式の約5倍となる.TLP型は,ほぼ動揺しない一方, 係留力の最大値がセミサブ式のおおよそ3倍となる.

コストの観点から各種浮体の特性を Table3 に示す. セミサブ式,スパー式は,浮体動揺が少ないため,着 底式のために開発された洋上風車を浮体に搭載する ことが可能であるが,浮体の製造コストがかかる.ス パー式は浮体のコストは安く抑えられるが,設置水深 120m 以上が必要である.ポンツーン式は浮体動揺が 大きいため,大きな傾斜を許容する風車の設計が必要 であるが,浮体のコストが安くなることが期待される. TLP 式は,浮体のコストは安いが,係留索の強度が必 要である.

Table 3 各種浮体式風力発電システムのコスト特性

	風車	浮体	係留	施工
セミサブ	0	\bigtriangleup	0	\bigcirc
ポンツーン	\bigtriangleup	0	\bigcirc	\bigcirc
TLP	0	0	\bigtriangleup	?
スパー	0	0	0	\triangle

3. 異なる水深における浮体動揺特性の評価

3.1 係留索の設定

水深 50m, 80m, 100m におけるカテナリー係留索は

カテナリー曲線の式を用いて作成し,係留索の形状を Fig.5 に示した.異なる水深における浮体の係留点での 初期張力と復元力を Fig.6 に示す.水深が深いほど重 量が大きいため,初期係留力は大きくなる.サージ方 向に 8m 移動した際の水平方向の係留力(復元力)は 水深が浅いほど,サージ方向へ同じ距離移動した場合, 係留取り付け角度が大きくなるため,水平方向の復元 力が大きくなる.

Table4 には異なる水深における浮体固有周期の変化 を示す. 浮体の固有周期は水深による影響が小さい. ただし,水深が浅くなるにつれ,初期係留力が小さく なり,ヨーの固有周期が短くなることが分かる.

Fig.5 異なる水深における係留索の形状

Fig.6 異なる水深における初期係留力と復元力

Table 4 異なる水深における浮体固有周期の変化(秒)

	50m	80m	100m
サージ	74.9	79.6	74.9
スウェイ	77.0	79.2	74.6
ヒーブ	17.2	17.2	17.2
ロール	22.6	22.8	23.0
ピッチ	22.7	22.9	23.2
1 1	55.7	61.1	67.7

3.2 浮体動揺特性の評価

暴風時における異なる水深における浮体動揺と係留 カの最大値を Fig.7 に示す.浮体動揺の最大値は,サ ージ,ヒーブ,ピッチ方向ともにほとんど変化しない が,係留力は,水深 50m において,大きなスパイクが 発生し,その最大値が水深 80m の2倍以上となること が分かった.その時の係留力の時系列を Fig.8 に示す. 係留索が緩んだ際に浮体動揺が加わると,大きな係留 力が発生したと考えられる.釣り合い時に海底に接し ている部分の係留索の重量を2倍に重くすることによ り,最大値を25%ほど低減することができる.

Fig.7 各水深における暴風時の動揺の最大値の比較

Fig.8 水深 50m における係留力の時系列の例

次に,通常時における各水深における浮体動揺と係 留力を Fig.9 および Fig.10 に示す.福島沖において, 風速 15m/s における気象・海象条件を適用した.気象 条件は,ハブ高さ風速は 15m/s,乱流強度は 15.5%, 吹上角 0 度,ウィンドシア 0.14,風向偏差 0,乱流モ デルは Kaimal である.海象条件は,1時間有義波高 2.24m,ピーク周期 7.02sec である.風車の制御は文献 10)の浮体式洋上型コントローラを用いた.

Fig.9 に示すように、暴風時と同様、浮体動揺の平均 値・標準偏差ともに、水深の影響は受けない.一方、 Fig.10 に示すように、係留索は、水深が浅いほど、平 均値は小さくなるのに対して、係留張力の標準偏差は 大きくなる.このことから、水深は係留索の疲労荷重 に影響を与える可能性があることが分かる.

 (a) 平均値
 (b) 標準偏差

 Fig.9 異なる水深における通常時の浮体動揺の比較

(a) 平均値 (b) 標準偏差 Fig.10 異なる水深における通常時の係留力の比較

4. まとめ

本研究は、実証研究を参照に各種浮体モデルを作成 し、動解析を実施することにより、各種浮体の動揺特 性および水深の影響を明らかにし、以下の結論を得た.

- セミサブ式、ポンツーン式、TLP 式、スパー式の各浮体モデルの固有周期および規則波中の動揺特性を 評価した結果、ポンツーン式は、ヒーブ、ピッチ方向の固有周期が短いため、波の周波数帯と重なり、共振が発生し、動揺が大きくなることが分かった。
- 2) 暴風時におけるポンツーン式のピッチ角度はセミサ ブ式の大凡5倍になることが分かった.スパー式の動 揺量はセミサブ式とほぼ同じであった.TLP 式の係 留力はセミサブ式の約3倍となった.
- 3) 水深 50m,80m,100m においてセミサブ式浮体の動解 析を実施した.その結果,水深は浮体の動揺に大き な影響を与えないが,係留力は水深が浅いほど暴風 時の最大値および通常時の標準偏差が大きくなるこ とを示した.

謝辞

本研究は、国立研究開発法人新エネルギー・産業技術総合開 発機構(NEDO)の委託業務で得られた研究成果である.関 係者の皆様に感謝の意を表す.

参考文献

- WindFloat: A Floating Foundation for offshore wind turbines – Part1: Design Basis and Qualification Process, OMAE2009-79229, pp. 845-853.
- 今北明彦,長拓治,神永肇,福島沖 2MW 浮体式洋 上風力発電実証事業の成果,三井造船技報 No.2019, 2017.
- 3) 宇都宮智昭, 佐藤郁, 白石崇, 乾悦郎, 石田茂資, 浮体 式洋上風力発電の実用化に向けて-五島市椛島における 実証事業-, 土木学会論文集 B3, Vol.70, No.2, 2014.
- K. Suzuki, H. Yamaguchi, M. Akase, A. Imakita, T. Ishihara, Y. Fukumoto, T. Oyama: Initial design of TLP for offshore wind farm, Renewable energy 2010, Yokohama, Japan, 2010.
- Carbon Trust, Floating Offshore Wind Energy: Market and Technology Review, 2015.
- J. M. Jonkman and D. Matha, Dynamics of offshore floating wind turbines – analysis of three concepts, Wind Energy, vol. 14, issue 4, pp. 557-569, 2011.
- J. Jonkman et al., Definition of a 5-MW reference wind turbine for offshore system development, 2009.
- NWTC Information Portal (FAST v8). https://nwtc.nrel. gov/FAST8. Last modified 27-July-2016, 2017.
- 9) ANSYS AQWA ホームページ, http://www.ansys.com/ ja-jp/products/structures/ansys-aqwa, 2017
- 10) 日置史紀, 戸塚義孝, 今村博, 浅い水深の海域における セミサブ型浮体式風車の荷重評価, 第38回風力エネルギ ー利用シンポジウム論文集, pp.217-220, 2016.