土木学会第71回年次学術講演会

メソスケールモデルを用いた洋上風況予測と実測による検証

東京大学大学院工学系研究科 社会基盤学専攻 正会員 〇菊地由佳 東京大学大学院工学系研究科 社会基盤学専攻 正会員 石原 孟

1. はじめに

洋上風力発電量を正確に評価するには風況予測が必要である.遠浅の海岸が少ない日本では,洋上風力開発は沿岸部が中心となるため,局地風,土地利用,海面水温の影響が重要である.そこで,本研究では,千葉県銚子沖を対象に,メソスケールモデルを用いて通年の気象シミュレーションを実施し,実測値と比較することにより,ナッジング,土地利用および海面水温が洋上風況の予測精度に与える影響を明らかにする.

2. 気象モデルと現地観測の概要

本研究では、メソスケールモデル WRF¹⁾を用いた. 計算期間は 2013 年 2 月から 2014 年 1 月までの 1 年間 とした. 図-1 に計算領域を示す.水平解像度は 18km, 6km, 2km とし、100×100 の格子を設定した.また、 気象データには NCEP-FNL を用いた.

(a) 観測地点の位置(b) 観測タワーの概観図-2 洋上風況観測の概要

また、検証用データとして千葉県銚子沖約 3.1km に

位置する洋上風況観測タワー²⁾に設置されたドップラ ーライダーで計測した 10 分間の風況データを用いた. 図-2(a)(b)には,観測地点の位置(北緯 35°40'53",東経 140°49'23")観測タワーの概観を示す.風車影響方向で ある西風はデータから除外した.

2. 気象モデルと現地観測の概要

本研究では、局地風を再現しつつ(バイアスの低減)、 位相誤差を抑制できる(RMSEの低減)最適なナッジング 方法を調べるため、表-1で示すように全層に対するナッ ジングの有無と大気境界層内に対するナッジング領域 の影響を調べる5ケースの計算を行った。

計算ケース	対象鉛直層	計算領域		
		1	2	3
Case1.1	全層	×	×	×
Case1.2		0	0	0
Case1.3	大気境界層内 (1500m)	×	×	×
Case1.4		0	×	×
Case1.5		0	0	×

表-1 ナッジング方法を検証する計算ケース

まず館野高層気象台での観測値と比較を行った.図-3 に示すように第2領域の大気境界層内をナッジングし たCase1.2, Case1.5は大きなバイアスが発生し,局地風 が再現されなかった.次にCase1.1, Case1.3, Case1.4の 結果を銚子の通年の観測値と比較した.その結果,表-2 に示すようにバイアスはほぼ同様となり,Case1.4の場 合が最小のRMSEとなった.以上の結果から,局地風を 再現しつつ,位相誤差を抑制できる最適なナッジング 方法がバイアスとRMSEから決定できることを示した. 本研究では,Case1.4寸なわち第1領域は全層,第2・3領 域は大気境界層より上層に対してナッジングする方法 を用いた.

地形データにはUSGSの代わりに、標高データには国 土地理院(GSI)50mメッシュ、土地利用データには国土 数値情報100mメッシュデータを用いた. WRFでは、代 表土地利用分類が最近傍法により選択されるため、気

キーワード メソスケールモデル,洋上風況予測,実測による検証 連絡先 〒113-8656 東京都文京区本郷 7-3-1 東京大学大学院工学系研究科 社会基盤学専攻 03-5841-1145

土木学会第71回年次学術講演会

象モデルとデータベースの解像度が異なる場合,必ず しもメッシュ内の代表分類を選択しない.そこで,気 象モデルの水平解像度に対応したメッシュ内で面積最 多の土地利用分類を代表分類としたデータベースを作 成し,気象モデルに入力した.

表-2 ナッジング方法のバイアスとRMSEへの影響

図-3 ナッジング方法の風速鉛直分布への影響

3. 風況予測と実測による検証

海面水温データにはNCEPの代わりに、イギリス気 象庁のOSTIAを用いた.図-4に示すようにNCEPの過大 評価がOSTIAにより改善されたが、依然として特に冬季 において誤差が生じた.そこで、本研究では、この誤 差をクレスマン関数に基づき銚子で得られた観測値を 用いて補正した.影響半径は銚子から約18km離れた波 崎における観測値を用いて推定した結果、約226kmと算 出された.一方、水深により水温が変化するため、沿 岸の観測値を沖合に適用できるか検証する必要がある. そこで、銚子の通年の観測とOSTIAとの相関係数を求め た結果、水深に依らず相関係数が0.9以上であった.以 上の結果から、銚子におけるOSTIAの水温と観測値との バイアスを6時間毎に補正したデータベースを作成し、 気象モデルに入力した.

本研究では、土地利用および海面水温の影響を調べるため、既存のデータベースを用いた場合(USGS+NCEP)と詳細な標高・土地利用データおよびバイアス補正を行った海面水温データを用いた場合(GSI+バイアス補正)の2ケースの計算を行った。

図-5 には、年平均風速の鉛直分布とその相対誤差を 示す.詳細土地利用の導入および観測を用いた水温補 正により、特に下層における風速の予測精度が向上し、 風車ハブ高さの年平均風速の相対バイアスは7.3%から 2.2%まで低減された.また、土地利用および海面水温 による影響が小さい高度200mにおける予測精度は非 常に高く、いずれのケースも誤差1%未満であった.

4. 結論

本研究では、局地風を再現しつつ位相誤差を抑制で きる最適なナッジング方法の決定手法を提案した.ま た、詳細土地利用の導入および観測を用いた水温補正 により、年平均風速のバイアスは7.3%から2.2%まで低 下したことを明らかにした.

謝辞

本研究は,独立行政法人新エネルギー・産業技術総合 開発機構(NEDO)の委託業務「洋上風況観測システム技 術の開発」で得られた研究成果である.また,港湾空港 技術研究所には海面水温データを提供していただいた. ここに記して関係者の皆様に感謝の意を表す.

参考文献

- WC. Skamarock et.Al.: A Description of the Advanced Research WRF Version 3, NCAR, (2008)
- [2] 助川博之, 福本幸, 成,山中徹, 大窪一正, 石原孟: 銚 子沖3.1kmにおける洋上風況観測, 第35回風力エネ ルギー利用シンポジウム, pp.260-263, (2013)