福島沖の風況の長期予測に関する研究*

Long-term prediction of wind climate at Fukushima offshore site

石原 孟^{**}山口 敦^{**} Takeshi ISHIHARA Atsushi YAMAGUCHI

荒川 洋*** Hiroshi ARAKAWA 大森 政則*** Masanori OHMORI

1. はじめに

風力発電設備における発電量や施工稼働率を評価 するためには、平均風速の経年変化や月別変動を精度 よく求める必要がある.また、設計風速を評価するた めには、年最大風速の非超過確率分布を精度良く求め る必要があるが、日本のように熱帯低気圧(台風)及 び温帯低気圧(非台風)の両方が強風の要因となる混 合気候では、強風の成因を考慮した年最大風速の確率 分布を評価する必要がある.

著者らはこれまで、数値シミュレーションを用いる ことにより、洋上風力発電設備の設計に必要な気象条 件を評価する手法を提案してきた¹⁾²⁾.しかし、長期 変化や季節風の 50 年再現期間の極値を求めるには、 高解像度且つ長期間の数値シミュレーションによる 評価が必要となる.

本研究では、福島沖浮体式洋上風力発電実証研究サ イトにおいて1年間の風速場の気象シミュレーション を実施し、同期間で得られた観測値と比較することに より気象予測の精度を評価する.さらに短期間の同一 期間における低解像度と高解像度の数値シミュレー ション結果の関係式を求め、長期間の低解像度の数値 シミュレーション結果を補正することにより、平均風 速の経年変化や月別変動、及び温帯低気圧等の季節風 による極値風速を予測する手法を提案する.

2. 福島沖における洋上風況観測と風況予測

2.1 洋上風況観測の概要

本研究では、福島浮体式洋上ウィンドファーム実証 研究事業(Floating OffshoRe Wind fARm Demonstration project, FORWARD project)により観測が実施されて いる風況の観測データを用いた. Fig. 1 に本事業の実 施海域を示す.気象海象観測は,北緯 37度 18.6486 分, 東経 141 度 14.4042 分,離岸距離約 20km,水深約 120m の地点に設置されている浮体式サブステーションに おいて実施されている.

Fig.1 本事業の実施海域

2.2 風況予測の概要

本研究では、洋上風況予測を行うために、アメリカ 大気研究センターなどによって開発されたメソスケ ール気象モデル WRF (Weather Research and Forecasting) version $3.4.1^{3}$ を用いて、 2014 ∓ 7 月から 2015 ∓ 6 月までの1年間の数値シミュレーションを実 施した.計算はスピンアップ期間を1日とし、1ヶ月 単位で行った.気象モデルの計算条件の概要を Table 1 に示す.

Table 1 WRF の計算条件

水平解像度	18km, 6km, 2km
水平格子数	100×100
鉛直層数	45 層 (地上-50hPaまで, 200mまでに 11 層)
タイムステップ	72 秒, 24 秒, 8 秒 (水平格子解像度の 4 倍)
気象データ	NCEP-FNL 1°×1° 6-hourly
海面水温データ	OSTIA 0.05°×0.05° 6-hourly
地形データ	標高:国土地理院 50m メッシュ
雲微物理	Ferrier (new Eta) microphysics
長波放射	rrtm scheme
短波放射	Dudhia scheme
接地境界層	Monin-Obukhov (Janjic Eta) scheme
地表面過程	unified Noah land surface model
大気境界層	Mellor-Yamada-Janjic (Eta) TKE level2.5
積雲パラメタ	Betts-Miller-Janjic scheme
4DDA	グリッドナッジング

2.3 風況予測の精度検証

Fig. 2 には, WRF による数値シミュレーションの予 測結果と観測値の月平均風速の比較を示す.予測値は,

^{*}平成28年12月1日第38回風力エネルギー利用シンポジウムにて講演 **会員 東京大学工学系研究科 〒113-8656 東京都文京区本郷7-3-1 *** 株式会社水域ネットワーク

通年において観測値を精度良く再現していることが 分かる. Fig. 3 には風速階級別出現頻度の予測値と観 測値の比較を示し、風速階級によらず、出現頻度をよ く再現されている. Fig. 4 に風向別出現頻度の予測値 と観測値の比較を示す.観測値と比較して W 方向周辺 の出現頻度は若干過小評価し、NNW 方向での出現頻 度は若干過大評価となっているが、卓越風向の S 方向 における出現頻度はよく再現している.

Fig. 5 には、予測結果と観測値の風向別平均風速の 比較を示す.観測値と比較して W 方向周辺の平均風速 は過小評価であるが、その他の風向の平均風速は概ね 再現されている. Fig. 6 には、予測結果と観測値の年 平均風速の鉛直分布の比較を示す.予測結果は、各高 度における年平均風速を精度良く再現している.

Fig.4 風向別出現頻度の比較

Fig.5 風向別平均風速の比較

Fig.6 年平均風速の鉛直分布の比較

3. 平均風速の長期変化と極値風速の予測

発電量の予測と施工稼働率の予測を行うためには, 平均風速の経年変化や月別変動を精度良く予測する 必要がある.また風力発電設備の設計風速の予測を行 うためには,極値統計解析から季節風の 50 年再現期 間の極値風速を精度良く予測する必要がある.これら の予測を行うためには,長期シミュレーションを実施 する必要があるが,高解像度の長期シミュレーション を実施するには計算時間とコストが掛かる.本研究で は,同一期間の低解像度と高解像度の数値シミュレー ション結果の関係式を求め,補正係数を決定した上, 低解像度シミュレーション結果を補正することによ り,平均風速の長期変化及び季節風による極値風速を 予測する手法を提案する.

3.1 平均風速の経年変化及び月別変動の予測

平均風速の長期変化の予測では、低解像度及び高解 像度のシミュレーション結果として、WRFによる気象 シミュレーションの水平解像度18km及び2kmの結果 (共に時間解像度は1時間)を用いて、これらの結果 の年平均風速の比を補正係数とし、低解像度の長期デ ータを補正することにより、平均風速の長期変化を予 測した.具体的には、式(1)による補正係数を用いて、 式(2)により各年の平均風速、式(3)により各月の平均風 速、式(4)により各月の標準偏差を求める.

$$C = \overline{U}_H / \overline{U}_L \tag{1}$$

$$\widehat{U}_{H,i} = \mathcal{C}U_{L,i} \tag{2}$$

$$\widehat{U}_{H,j} = CU_{L,j} \tag{3}$$

$$\sigma_{j} = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (\hat{U}_{H,i,j} - \mu_{j})^{2}}$$
(4)

ここで、C は低解像度のシミュレーション結果を高解 像度のシミュレーション結果に変換する補正係数、 \overline{U}_H 及び \overline{U}_L はそれぞれ、同一期間の高解像度及び低解像度 シミュレーション結果による年平均風速であり、本研 究では3年間とした. $U_{L,i}$ 、 $U_{L,j}$ 及び $\widehat{U}_{H,i}$ ・ $\widehat{U}_{H,j}$ は、補正 前後の低解像度シミュレーション結果による各年・各 月の平均風速、µおよびoは、10年間(N=10)の各月 おける平均風速および標準偏差である。下付きのiは、 年を意味し,jは月を表す.本研究では2006年から2015 年までの10年間(i=1,2,...,10)の年平均風速、1月か ら12月までの12ヶ月(j=1,2,...,12)の月平均風速を 算出する.

Fig. 7 には、補正した 10 年間の低解像度シミュレーション結果 $\hat{U}_{H,i}$ と、真値とする高解像度シミュレーション結果 U_H の平均風速の経年変化との比較、Table 2 にその値と補正係数を示す。年平均風速は 7.0~7.5m/s と概ね一定の値を示している。本提案手法により補正した低解像度シミュレーション結果は、任意の 3 期間(2006~2008年、2009~2011年、2013~2015年)の何れの補正係数を用いても、真値である高解像度シミュレーション結果を精度良く再現していることが分かる。

Fig. 8 には、補正した 10 年間の低解像度シミュレーション結果 $\hat{U}_{H,j}$ と、高解像度シミュレーション結果 U_H の平均風速、標準偏差の月別変動の比較、Table 3 及びTable 4 にその値を示す.福島沖における月平均風速は、6.0~8.0m/s 前後であり、6 月から 8 月の夏季は低く、12 月から 2 月の冬季は高い傾向にある.標準偏差も、0.4~0.8m/s 前後と、対象年によってばらつきの大きい年があることが分かる.本提案手法により補正した低解像度シミュレーション結果は、年平均風速の補正と同様に、任意の 3 期間のどの補正係数を用いても月平均風速およびその標準偏差を真値である高解像度シミュレーション結果とほぼ同じ精度で再現できることが分かった.

Table 2 10年間の年平均風速の値と補正係数

Year	$U_{\rm H}(m/s)$	$C_1U_1(m/s)$	$C_2 U_1 (m/s)$	$C_3U_1(m/s)$
2006	7.48	7.48	7.49	7.51
2007	7.22	7.18	7.19	7.21
2008	7.18	7.21	7.21	7.24
2009	7.06	7.07	7.07	7.09
2010	7.16	7.13	7.14	7.16
2011	7.02	7.02	7.03	7.05
2012	7.29	7.36	7.37	7.39
2013	7.48	7.46	7.47	7.49
2014	7.18	7.18	7.18	7.21
2015	7.15	7.09	7.1	7.12
$C_1 = 1.033, C_2 = 1.034, C_3 = 1.037$				

Fig. 8 月平均風速及びその標準偏差の比較

Table 3 10年間の月別平均風速の比較

	-			1
Month	$U_{\rm H}({\rm m/s})$	$C_1 U_1 (m/s)$	$C_{2}U_{I}(m/s)$	$C_3 U_1 (m/s)$
1	8.32	8.35	8.36	8.38
2	8.23	8.28	8.28	8.31
3	8.13	8.11	8.11	8.14
4	7.91	7.90	7.91	7.93
5	7.29	7.30	7.31	7.33
6	6.02	5.99	5.99	6.01
7	6.29	6.28	6.29	6.31
8	6.16	6.15	6.15	6.17
9	6.42	6.36	6.37	6.39
10	6.88	6.85	6.85	6.87
11	7.09	7.09	7.10	7.12
12	7.98	8.02	8.02	8.05

Table 4 10年間の月別標準偏差の比較

Month	$U_{\mu}(m/s)$	$C_1 U_1 (m/s)$	$C_2 U_1 (m/s)$	$C_{2}U_{I}(m/s)$
1	0.49	0.30	0.30	0.30
2	0.73	0.76	0.76	0.76
3	0.67	0.66	0.66	0.66
4	0.79	0.83	0.83	0.83
5	0.44	0.42	0.42	0.42
6	0.60	0.64	0.64	0.64
7	0.44	0.48	0.48	0.48
8	0.60	0.63	0.63	0.63
9	0.60	0.60	0.60	0.60
10	0.73	0.80	0.80	0.81
11	0.47	0.54	0.54	0.54
12	0.67	0.69	0.69	0.69

3.2 季節風の極値風速の予測

極値統計解析においては、年最大値を用いるのが一 般的であり、風速に関しては風力発電設備の設計に関 する国際基準 IEC61400-14)では、10 年以上の年最大風 速を用いることが推奨されている.本項では,2006年 から 2015 年までの 10 年間の高解像度シミュレーショ ン結果における年最大風速から, Gumbel 分布により 推定した極値風速の 50 年再現期待値を真値と仮定す る. そして, 平均風速の長期変化と同様に, 短期間且 つ同一期間の低解像度シミュレーション結果と高解 像度シミュレーション結果の関係式を求め、補正係数 を決定した上、低解像度シミュレーション結果を補正 することにより、極値風速を予測する手法を提案する. なお,本項での補正係数の算出には,日最大風速の平 均風速を用いるものとし、対象年数は平均風速の長期 変化の予測と同様に3年間とした.また、本研究では 季節風による極値風速を求めるため、各年の低解像度 及び高解像度のシミュレーション結果から、台風に起 因する風速(半径 500km 以内, 且つ 985hPa 以下の台 風発生時に得られた風速)を除去した結果を用いた.

Fig. 9 には、季節風の年最大風速における極値風速 分布、Table 5 に、補正前後の 50 年再現期待値 U_{H50} 、 \hat{U}_{H50} 及び両者の BIAS 値と補正係数を示す.なお、極 値分布の評価に用いた Gumbel 分布のパラメータは積 率法により求めた.補正した低解像度シミュレーショ ン結果から得られた極値風速は、任意の 3 期間の何れ の補正係数を用いても高解像度シミュレーション結 果から得られた極値風速を若干過大評価しているが、 補正後の低解像度シミュレーション結果の 50 年再現 期待値は、真値と最大で+1.57m/s(+4.0%)程度の誤差で あることから、本章にて実施した季節風に起因する極 値風速の補正は、精度良く行われていることが分かる.

Table 5 補正前後の 50 年再現期待値・BIAS と補正係数

U _{H50} (m/s)		39.29	
C _{1,2,3} U _{L50} (m/s)	40.57	40.49	40.86
BIAS(m/s)	1.28	1.20	1.57
$C_1 = 1.092, C_2 = 1.090, C_3 = 1.100$			

4. まとめ

本研究では、福島沖浮体式洋上ウィンドファーム実 証研究事業サイトにおいて、気象シミュレーションに よる通年の風況予測、平均風速の経年変化と月別変動 及び季節風の極値風速の予測を実施し、以下の結論を 得た.

- 実証検証サイトにおいて、1年間の気象シミュレ ーションを実施し、同時期の観測値と比較した. 気象シミュレーションによる予測風速は、観測値 の月平均風速、風速階級別発生頻度、風向別出現 率、風向別及び鉛直方向の年平均風速の特徴をよ く再現した.
- 3年間の同一期間における低解像度(水平解像度 18km)と高解像度(水平解像度 2km)のシミュレ ーション結果における平均風速から求めた補正係 数を用いて,低解像度の結果を補正することによ り,高解像度で求めた平均風速の経年変化及び月 別変動を精度良く再現した.
- 台風起因の風速を除去した日最大風速から求めた 補正係数を用いて、低解像度の結果を補正するこ とにより、高解像度で求めた季節風に起因する極 値風速分布を精度良く再現した。

謝辞

本研究は,経済産業省の委託業務「福島復興・浮体 式洋上ウィンドファーム実証研究事業」で得られた研 究成果である.ここに記して関係者の皆様に感謝の意 を表す.

参考文献

- 福島雅人・山口敦・石原孟、メソスケールモデルを用いた洋上風況予測と不確かさの評価、第36回風力エネルギー利用シンポジウム、2014、pp.333-336.
- 石原孟・山口敦, モンテカルロシミュレーションと MCP 法を用いた混合気候における極値風速の予測, 日本風工 学会論文集, Vol.37, No.3, 2012, pp.105-116.
- 3) W. C. Skamarock, J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X. Huang, W. Wang, and J. G. Powers, A description of the advanced research WRF version 3, NCAR Technical Note, 2008.
- IEC 61400-1: Wind turbines part 1: design requirements. Ed. 3, 2005.