太鼓山風力発電所における風車ナセルとタワートップフランジ 接合部の FEM 解析に関する研究*

FEM Analysis for the joint between nacelle and tower top flange of the Taikoyama Wind Turbine

1. はじめに

2013年3月12日に京都府太鼓山風力発電所内3号 機の風車支持物タワー頂部において、フランジ直下の タワー筒身の疲労破壊による風車ナセルの落下が発生 した。筒身に過大な疲労荷重が生じた理由については、 ナセルとタワートップフランジ接合部の高力ボルトが 破断したことで、筒身に生じる引張応力の変動幅がボ ルト健全の場合に比して3倍に増大したためであるこ とが FEM 解析により示された¹⁾。またボルト軸力の 低下により、ボルトの軸力変動幅が増大し、それによ りボルトの寿命が大きく低下することが示された²⁾。

そこで、本研究では、ボルト損傷の原因を明らかに するために、ボルトの初期導入軸力を系統的に変化さ せ、その影響を FEM 解析により評価した。また本研 究で用いた FEM の妥当性を検証するために、既存の 文献との比較を行い、精度検証も行った。

2. 解析の概要

当該発電所タワーは、ドーナツ状の発電機がロータ 前面に付いており、ナセル重心が前面に偏っているこ とで、タワートップフランジとナセルの接合部におい て、風下側であっても殆ど常時鉛直方向引張力を受け

図1 タワートップフランジ断面

*平成 27 年 11 月 27 日 第 37 回風力エネルギー利用シンポジウムにて 講演

**	会貝	果兄天子즈	子阮」	L子糸	妍 究 科	教授
		〒113-8656	東京者	8文京	区本郷	7-3-1

***会員 東京大学大学院工学系研究科 研究員

石原 孟^{**} 難波 治之^{***} Takeshi ISHIHARA Haruyuki NAMBA

ている¹⁾²⁾。図1にその接合部断面を示す。そこで、ボルトの疲労寿命評価のためには、タワートップフランジにおける作用力とボルト軸力の関係を FEM 解析により明らかにする必要がある。

タワートップフランジにおける作用力とボルト軸力 の関係を求めることを目的として、タワー全体の FEM モデルを構築するにあたり、まず、タワートップの接 合ボルトについては、ソリッド要素を用いてモデル化 し、既往文献と同様の FEM モデルを作成し、解析結 果を比較することでモデルの精度および解析手法の妥 当性を検証した。次に、風車全体をモデル化するにあ たり、計算時間の短縮のため、数多いボルトをビーム 要素で表わすことを検討し、ボルトをソリッド要素と した場合とビーム要素とした場合の再現性について検 証した。得た知見に基づき、タワーとナセルの接合部 分を含む風車全体をモデル化し、FEM 解析により、初 期導入軸力を変化させた場合のタワートップフランジ における作用力とボルト軸力の関係を求めた。

3. ボルトのモデル化

3.1 ソリッド要素を用いたボルトモデルの検証

接合部のボルトの応力-ひずみ関係を正しくモデル 化できるかどうか検証するため、既往文献³⁾を参照し、 Test Flange 1 (中間フランジボルト1本分の部分モデ ル)を図 2 のように再現した。文献では FEM コード として ANSYS を採用している。本解析では ABAQUS/Standardを用いる。

図 2(a)に示す解析モデルは、L 型フランジ(上下)、 M36 ボルト及びワッシャで構成されている。ボルト中 心断面で対象であることから 1/2 モデルで作成した。 境界条件として、下フランジ下端にて完全固定、上フ ランジ上端では論文に従い約 310kN の荷重を与える ために強制変位 1mm を設定した。変形図(表 1 ケー ス 1 に対応、変位を 50 倍に拡大して表示)を図 2(b) に示す。

フランジ側面は自由端とし、ボルト対称軸断面上に は対称条件を設定した。また、上下のフランジ間、フ

(a) 上側フランジ(b) 下側フランジ図3 接触条件

ランジとワッシャ間には、それぞれ接触を考慮し、摩 擦係数 0.2 を設定した。フランジ孔壁とボルト間(ね じ部)にも接触を考慮するが、その摩擦係数は 0 とし た。接触条件を図 3 に示す。ボルトの導入軸力は、文 献に従いを表 1 に示す 2 ケースを設定した。

図4にはボルト軸力と作用する軸力の関係を示し、 本解析の結果は文献の結果とよく一致していることが 分かる。図に示す非線形性は、フランジ接合面の接触 と離間によるものである。

3.2 ビーム要素を用いたボルトモデルの精度検証 風車全体をモデル化するにあたり、計算時間の短縮 のため、ボルト要素をビーム要素とすることを検討し、 ビーム要素とした場合の精度について検証する。

表1 ボルト導入張力

ケース1	485 kN
ケース 2	490 kN

図4 ボルトの軸力と作用軸力の関係

解析モデルは図 2(a)に示したモデルを基本とするが、 ビームで表わしたボルトは対称性を考慮した半割りモ デルではなく、1本モデルとした。またボルトを表す ビーム要素の長さについては、ワッシャ厚とボルト頭 厚の影響を確認するために、表2に示す2ケースを設 定し、精度検証を行った。

表2 ボルトを表すビーム要素長さの設定

長さ(mm)	対応する長さの採り方
160.0	接合母材(フランジ)厚
216.5	上記+ワッシャ厚+ボルト頭厚

図5にモデル全体図とボルト部拡大図を示す。ボル トをビーム要素でモデル化する場合は、ワッシャのモ デル化を省略し、ワッシャとフランジの接触面のすべ ての節点から、ボルトビーム要素端を剛体接合するよ うモデル化している。ボルトをソリッド要素でモデル 化した場合とビーム要素でモデル化した場合のモデル 条件及び接触条件の違いを表3にまとめた。

表1に示したケース1の導入軸力において、図4の ボルトをソリッド要素とした解析結果(本解析(ケース 1))と、ボルトをビーム要素でモデル化した解析結果 (ボルト長2ケース)を比較して図6に示す。

また、図 2(b)からわかるようにボルトには曲げ変形 を生じている。ボルトに生じる曲げモーメントについ てもボルト軸力と同様に、ボルトをソリッド要素とし た場合と、ビーム要素とした場合の比較を行った。ソ リッド要素の場合の曲げモーメントは最外縁の軸方向

(a) 全体図 (b) 拡大図(半割り表示)

図5ビーム要素を用いた解析モデル

項目		ソリッド要素	ビーム要素	
	ボルト	ソリッド	ビーム	
モデル	フランジ	ソリッド	ソリッド	
条件	ワッシャ	ソリッド	無し(剛接)	
	モデル範囲	1/2 範囲	全体	
	上下フラン	右り	古り	
	ジ間	有り	有り	
接触	フランジ・	古り	ÁIII. 1	
条件	ワッシャ間	有り	無し	
	フランジ・	右り	4117-1	
	ボルト間	有り	悪し	

表3 モデル条件および接触条件の比較

応力度とボルトの断面係数により、平面保持を仮定し て評価した。図7に曲げモーメントの比較を示す。

導入軸力の差異に拘わらず、ボルト長 160mm とし た場合のボルトビーム要素の解析結果は、ソリッド要 素の結果よりも軸力、曲げモーメントが高く出る結果 となるが、ボルト長を 216.5mm としたビーム要素の 解析結果はソリッド要素とほぼ一致する結果となった。

従って、風車全体モデルの解析では、ボルト長を 216.5mm としたモデルを採用し、ビーム要素によりす べてのボルトを再現することとした。

4. 風車全体モデルによるボルト軸力の評価

風車全体をモデル化するにあたり、詳細な評価を行 うタワートップフランジ部分はソリッド要素とし、ボ ルトはビーム要素としてモデル化する。それ以外のタ ワー全体はシェル要素、ナセル及びロータはその重心 に位置する質点としてモデル化する。タワートップフ ランジの上のヨーベアリングとロータ質点は、剛梁で 接合するものとした。

図 6 ソリッド要素とビーム要素を用いた場合の ボルトの軸力と作用軸力の関係の比較

図7ソリッド要素とビーム要素を用いた場合の ボルトの曲げモーメントと作用軸力の関係の比較

境界条件及び接触条件としては、タワー下端を完全 拘束とし、ヨーベアリングブロック下面(図1)とタワ ートップフランジ上面の間には接触を考慮し、摩擦係 数は0.2とした。

モデルの全体、タワートップの拡大、およびヨーベ アリングブロックとタワートップフランジ接合部分の 断面拡大を図8に示す。太鼓山風力発電所でタワー筒 身の疲労破壊がフランジ直下で発生したことから、フ ランジ下の筒身は、溶接部隅角での応力集中の影響を 評価できるよう板厚方向の要素分割数を4とした。風 荷重は、ロータと発電機の重心位置に水平方向のスラ スト力を増分荷重として与えた。

ボルトの導入軸力に関しては、ボルトの降伏強度の 約8割として、設計軸力は265kNであるとされてい る。一方、現地調査の結果から、ボルト施工のバラツ キは10数%程度であり、正常なボルトは設計軸力の 80%以上であることを明らかにしている。

過去の損傷事例から、ボルトの導入軸力の低下が観 測されており、その代表、およびその状況から、軸力 が低下した場合におけるボルトへの作用荷重とボルト 軸力の関係を考慮するため、代表的に6本のボルトの

図8 3次元解析モデル

ケース	ボルトの導入軸力	ボルト6本の軸力
1	設計軸力の 100%	設計軸力の 100%
2		同 80%
3		同 60%
4		同 40%
5	設計軸力の 80%	同 30%
6		同 20%
7		同 10%
8		同 0%

表4 全体モデルの解析ケース

軸力が低下することを仮定し、表4に示す解析ケース を設定した。なお、6本のボルトの位置は、実際損傷時 の荷重条件を鑑み、引張力を受けるロータの反対側と する。

それぞれのケースにおいてボルト位置での作用荷重 とボルト軸力(軸力が最大となるボルト)の関係を図 9に示す。ここで、ボルト位置での作用荷重は、当該ボ ルト1本分の範囲に生じる鉛直方向力である。

導入軸力が正しく導入されていれば、ボルトの軸力 変動が小さく、導入軸力が低下すると、荷重が小さい 場合での軸力の変化が大きくなることがわかる。従っ

図9 ボルト軸力と作用荷重の関係

て導入軸力の低下がボルトの疲労を促進する 2)。

5. まとめ

本研究では、ボルト損傷の原因を明らかにするため に、実機風車の全体モデルを構築し、ボルト軸力とタ ワートップに作用する荷重との関係を調べると共に、 ボルトの初期導入軸力を系統的に変化させ、その影響 を FEM 解析により評価した。その結果、以下の知見 を得た。

- (1) ソリッド要素を用いたボルトの解析結果、既往文献とよく一致した解を得た。またワッシャ厚とボルト頭厚を含めるビームモデルは同様な精度が得られた。
- (2) 初期導入軸力が低下した場合、ボルト軸力はボル ト位置における作用荷重の増加に伴い、大きく変化す る。

謝辞

本研究は NEDO(新エネルギー・産業技術総合開発 機構)の委託研究の一部として行われた。FEM 解析の 実施にあたり(株)JFE エンジニアリングにご協力を頂 いた。ここに謝意を表する。

参考文献

- 石原孟、山崎慈生、平田達也、長砂龍次、太鼓山 風力発電所の風車タワー疲労破断の原因解明につい て、第36回風力エネルギー利用シンポジウム、 pp.470-473,2014
- 2) 福王翔,石原孟,風車発電時の風荷重とタワー高 カボルトの疲労荷重に関する研究,第23回風工学 シンポジウム,pp.355-360,2014
- Seidel M., Schaumann P., "Measuring fatigue loads of bolts in ring flange connections", EWEC 2001