複合外力を考慮した浮体式洋上風力発電システムの 水槽試験と動揺予測*

Water tank experiment and dynamic analysis of floating offshore wind turbine system considering combined hydrodynamic loadings

石原孟^{**} 加賀谷健^{***} 菊地由佳^{***} Takeshi ISHIHARA Ken KAGAYA Yuka KIKUCHI

1. 序論

2013 年に,政府は福島県の復興のために,世界初 の浮体式洋上ウィンドファーム実証研究 ¹⁾を福島沖に おいて開始させた.洋上風車用の浮体は,石油・ガス の分野で用いられる大型浮体と異なり,経済性追求の ために細い部材により構成されているため,流体力の 非線形効果や部材の弾性挙動が重要である.

洋上風力発電システムの動的応答を精度よく予測 するために,風車-浮体-係留の連成解析プログラム CAsT^{2),3)}が開発されてきたが,いくつかの課題が残さ れている.一つは鉛直方向の流体力の評価に線形減衰 モデルを用いるため,ヒーブ方向の動揺予測が波高に 依存するという問題がある.もう一つは不規則波にお ける長周期動揺が発生することが報告されているが, その発生メカニズムが明らかとなっていない.さらに, 波と潮流の複合外力による浮体の動揺は,波による動 揺と潮流による動揺の線形重ね合わせで評価されて いるが,最適化設計のためには波と潮流の相互作用を 考慮する必要がある.

本研究では、まず鉛直方向の流体力に非線形減衰モ デルを導入し、規則波中の水槽実験の結果と比較する ことによりその有用性を検証する.次に、不規則波中 の動揺解析を行い、長周期動揺のメカニズムを明らか にする.最後に、複合外力中の応答解析を行い、波と 潮流の相互作用を明らかにし、非線形解析による動揺 予測の有用性を検証する.解析結果の検証のために、 1/50 スケールの水槽試験を実施した.また数値実験と 動揺解析で用いる浮体は、実証研究で用いられている 2MW 風車搭載カテナリー係留セミサブ浮体とした.

2. 水槽試験の概要

水槽試験は、(株)三井造船昭島研究所の潮流水槽を 用いて実施した.水槽部は長さ55m×幅8m×水深3m, 造波装置はフラップ式である.フルードの相似則に従い、図1に示す風車1機搭載のセミサブ型浮体の1/50 スケールの剛体模型を作成した.模型のセンターカラ ム上には、風車の重さ模擬を模擬するためのタワーを 設置した.浮体の3つのコーナーに設置された垂直コ ラムの浸水深さを20cm、風水洞の水深を2.5mに設 定した.本実験ではサージ、ヒーブ、ピッチの方向の 動揺を再現するために、図2に示すように、浮体の前 後に4本のカテナリー係留チェーンを用いて、浮体の 位置を保持した.

図1 水槽試験の様子

図2 浮体模型の配置状況と係留索の記号

3. 動解析モデル

風車-浮体-係留の連成解析プログラム CAsT では, 有限要素法に基づき,風車と浮体を Saint-Venant の ねじりを考慮する 6 自由度の梁要素により定式化し, 次式に示す運動方程式を解いている.

$$[M]{\ddot{x}} + [C]{\dot{x}} + [K]{x} = {F}$$
(1)

$$\{F\} = \{F_R\} + \{F_E\} + \{F_G\} + \{F_W\}$$
(2)

^{*} 平成 25 年 11 月 13 日第 35 回風力エネルギー利用シンポジウムにて講演 ** 会員 東京大学大学院工学系研究科社会基盤学専攻

^{〒113-8656} 東京都文京区本郷 7-3-1

^{***} 学生会員 東京大学大学院工学系研究科社会基盤学専攻

ここで[M]は質量マトリクス, [C]は構造減衰マトリ クス, [K]は要素剛性マトリクス, $\{x\}$ は節点変位ベ クトル, $\{F\}$ は各接点での外力ベクトルである. $\{F_G\}$ は係留索の張力, $\{F_R\}$ は非静水圧による復元力, $\{F_E\}$ は流体力, $\{F_w\}$ は空気力である.

本研究では単位長さの部材に作用する流体力 $\{F_{E}\}$ は、フリードクリロフカ $\{F_{EM}\}$ 、ディフラクションカ $\{F_{EW}\}$ 、粘性影響による抗力 $\{F_{ED}\}$ から求め、次式により表わす.

$$\{F_{E}\} = \{F_{EM}\} + \{F_{EW}\} + \{F_{ED}\}$$
(3)

部材の軸直交方向に作用する流体力は,風車用浮体 の部材の直径が小さく波の変形が無視できるためモ リソン式が適用され,次のように評価される.

$$F_{EM} = \rho_w A \dot{u} \tag{4}$$

$$F_{EW} = (C_M - 1)\rho_w V(\dot{u} - \ddot{x})$$
(5)

$$F_{ED} = 0.5\rho_w C_D A\left\{u - \dot{X}\right\} \left|\left\{u - \dot{X}\right\}\right|$$
(6)

ここで、 ρ_{w} は流体密度、 C_{M} は質量係数、 C_{D} は抗力 係数、 $u \ge u$ は水粒子の速度と加速度、 $\dot{X} \ge \ddot{X}$ は部材 の移動速度と加速度成分、 $A \ge V$ は部材の面積と体積 である.

一方,浮体のヒーブプレートの底面に鉛直に作用す る流体力は,部材の直径が大きいためモリソン式を適 用することができない.そこで,部材の軸方向に作用 する流体力を,次のように評価する.

$$F_{EM} = \rho_w \iint (\vec{u} \cdot \vec{n}) dS \tag{7}$$

$$F_{EW} = (C_{M}^{5} - 1)\rho_{w}V(\dot{u} - \ddot{x})$$
(8)

$$F_{ED} = 0.5 \rho_{w} C_{D} A \left\{ u - \dot{X} \right\} \left| \left\{ u - \dot{X} \right\} \right|$$
(9)

ここで、 \vec{n} はヒーブプレート表面の法線ベクトル、Sはヒーブプレートの表面積である.本研究では、部材の軸方向のフリードクリロフカ F_{EM} は、ヒーブプレートの面積が大きいため、波による変動圧力をヒーブプレート表面で面積分することによって厳密に評価した.ディフラクションカ F_{EW} では、部材の体積にヒーブプレートの底面を直径とする半球に相当する体積を与える⁴⁾.粘性影響による抗力 F_{ED} は、従来はSrivansanらの実験⁵により同定された減衰比く=0.15を用いて評価したが、本研究では式(9)に示す非線形減衰モデルを採用した.非線形減衰モデルの有用性について、規則波中解析により検証する.

数値解析には、運動方程式を時間領域で解く FEM コードを用いる.数値積分は Newmark-beta 法,固有 値解析は Subspace Iteration 法を採用した.参照座標 系はTotal Lagrange で定式化し,構造減衰に Reyleigh 減衰を適用し,構造減衰比を 0.5%とした.浮体は 80 のビーム要素,係留索は 50 のトラス要素でモデル化 した.解析に用いた流体力係数を表 1 に示す.係留索 の抗力係数は DNV⁶に示す値を参考に設定し,浮体の 流体力係数および係留索の質量係数は規則波中試験 の結果から同定した.

表1 解析に用いた流体力係数

		抗力係数 C_p	質量係数C _M
浮	軸直交方向	1.5	2.2
体	鉛直方向	2.0	3.0
係留索		1.3	2.2

4. 解析結果

4.1 静水中の解析

解析モデルの妥当性は、静的試験の結果を用いて、 検証した.釣り合い位置は 0.1mm, 0.1°であり、高 い精度で再現された.図3には係留反力の予測結果を 示し、実験結果とよく一致していることが分かる.ま た固有周期も表2に示すように精度よく再現された.

図3 係留力の予測値と実験値との比較

表2 固有周期の予測値と実験値との比較

	試験(s)	解析(s)
サージ方向	7.6	7.5
ヒーブ方向	2.4	2.4
ピッチ方向	3.0	3.0

4.2 潮流中の解析

潮流の影響を明らかにするために潮流中解析を行 なった.潮流中試験では、平均変位はサージ方向のみ に発生し、ヒーブおよびピッチ方向にはほとんど動か なかった.サージ方向の平均変位の予測値と実験値と の比較を図4に示す.予測値は実験値とよく一致して いる.解析に用いている浮体軸直交方向の抗力係数 1.5 は、近接している4本の円柱の相互作用の影響に より、円柱に対する実験値である1.2 より大きくなっ ていると考えられる.

図 4 潮流中におけるサージ方向の平均変位の 予測値と実験値との比較

4.3 規則波中の解析

異なる波高に対する予測精度を評価するために,波高 20,60,100mmの3ケースについて規則波中の動 揺解析を行った.水槽試験により,規則波中試験では, 平均変位はほとんど発生しないため,ここでは変動変 位の実験と解析の結果のみを示す.

図 5 には非線形減衰モデルによる解析結果を示す. サージ方向の予測値は振幅,位相ともに実験値とよく 一致している.ヒーブ方向の共振領域における予測精 度が非線形減衰モデルの導入により向上したが,波周 期の短い領域では過小評価がみられる.またピッチ方 向では波周期が長い領域で過大評価となっており,流 体力係数の波周期依存性を考慮した解析が必要と思 われる.

図6 線形と非線形減衰モデルの予測値の比較

図6には、浮体のヒーブ方向の変動変位の振幅を線 形と非線形減衰モデルで予測した結果と実験結果と の比較を示す.線形減衰モデルでは、波高60mmの振 幅を精度よく評価しているが、波高20mmでは過小評 価、波高100mmでは過大評価となっている.一方、 非線形減衰モデルは異なる波高について精度良く評 価できている.非線形減衰モデルの導入により、減衰 力の振幅依存性が再現でき、予測精度が向上した.

4.4 不規則波中の解析

長周期動揺のメカニズム解明のため、不規則波中の 解析を行なった. 波のスペクトルには、次式に示す JONSWAP スペクトルを使用した.

$$S(f) = \alpha_* H_{1/3}^2 T_p^{-4} f^{-5} \exp\left\{-\frac{5}{4} \left(T_p f\right)^{-4}\right\} \gamma^{\exp\left\{-\frac{\left(T_p f - 1\right)^2}{2\sigma^2}\right\}} (10)$$

$$\alpha_* = \frac{0.0624}{0.230 + 0.0336\gamma - 0.185(1.9 + \gamma)^{-1}}$$
(11)

解析に用いる入力波は、水槽試験の観測結果から同 定した.まず、計測された波から標準偏差を用いて有 義波高 H_{1/3}を算出する.次に、計測されたスペクトル のピーク値よりピーク周期 T_pを求める.最後に、最 も形状が近くなる形状係数 y を決定する.

図7には解析結果(太い実線)と実験結果(細い実 線)を示す.観測された波高スペクトル中に浮体の固 有振動数成分が殆ど存在しないが,浮体サージ方向に は明確なピークが現れ,長周期動揺が確認される.長 周期動揺はヒーブとピッチ方向のスペクトルに確認 され,浮体の固有振動数成分が励起されていることが 分かる.この長周期動揺の大きさは波による動揺とほ ぼ同じ大きさであり,風車-浮体-係留の設計荷重を 評価する際には長周期動揺を考慮することが不可欠 であることが分かる.

従来の浮体の研究では、浮体周りの反射波や回折散 乱波による波浪強制力の二次の項が長周期動揺を励 起すると説明されてきた.しかし、今回のような浮体 では浮体周りの反射波や回折散乱波の影響が小さい. 線形減衰モデルと非線形減衰モデルの解析から、非線 形減衰モデルのみが長周期動揺を再現できることが 分かり、式(6)に示すモリソン式中の非線形抗力が長周 期動揺励起の支配的要因であると分かった.

抗力の非線形性により波周期の和の成分と差の成 分が誘引される.不規則波が抗力を介して長周期の外 力を発生するために,浮体の固有振動数で共振が発生 する.すなわち,不規則波中の長周期動揺は非線形抗 力を介して発生した浮体の共振現象である.

解析結果は, 0.5Hz 以下の領域については入力波に 差があるが, サージ方向およびピッチ方向の固有振動 数付近の領域については予測値と実験値はよく一致 している.一方,高周波数領域は、ヒーブ方向の動揺 が過小評価となっている.これは,規則波中解析での 高周波数領域における過小評価に対応している.

4.5 複合外力中の解析

波と流れの相互作用を明らかにするために,複合外 力解析を行なった.従来の複合外力下の動揺予測では, 波と潮流の相互作用がないと仮定し,潮流応答と波応 答の線形重ね合わせにより評価していた.この場合に は平均変位は潮流応答により,変動変位は波応答によ り求める.

(b)変動変位

図8 複合外力中における線形と非線形モデルによる 予測値と実験値との比較

図8には、潮流速0.2m/s, 波高60mm, 波周期2.8s のケースにおける線形重ね合わせと非線形解析モデ ルの解析結果を示す.平均変位は、線形重ね合せと非 線形解析モデルの結果とも実験と一致し、波と潮流の 相互作用の影響がほとんどないことが分かった.一方, 変動変位は線形重ね合せの結果が非線形解析モデル の結果や実験値を上回り、相互作用の影響が存在する ことが分かった.式(6)に示す抗力項の水粒子の速度を 平均成分 \bar{U} と変動成分u'に分けると次のようになる.

$$F_{ED} = 0.5 \rho_{w} C_{D} A \left\{ \overline{U} + u' - \dot{X} \right\} \left| \left\{ \overline{U} + u' - \dot{X} \right\} \right|$$
(12)

複合外力中では、潮流による速度の平均成分の増加に より水力減衰が規則波中時よりも増加し、変動変位が 小さくなると考えられる.波と潮流の複合外力の評価 では、非線形解析が有効であることが分かった.

5. 結論

複合外力を考慮した浮体式洋上風力発電システム の水槽試験と動揺予測を行い,以下の結論を得た.

- 1) 非線形減衰モデルの導入により,減衰力の振幅依存 性が再現でき,予測精度が向上した.
- 2)不規則波中の長周期動揺は、不規則波が非線形抗力 を介して浮体の固有周期成分を励起することで発 生する.長周期動揺の予測には非線形解析が有効 である.
- 3) 複合外力中では、波と潮流の相互作用により、水力 減衰が大きくなる.従来の重ね合わせによる動揺 評価は過大評価となり、非線形解析により予測精 度が向上した.

謝辞 本研究は、経済産業省の浮体式洋上ウィンドファーム実証研究事業の一環として実施された.実験の実施にあたり、(株)三井造船昭島研究所の神田雅光博士の助言を頂きました.ここに感謝申し上げます.

参考文献

- 1) 福島洋上風力コンソーシアムホームページ, http://www.fukushima-forward.jp/
- 2) ファム バン フック,石原孟,セミサブ浮体式洋 上風力発電システムの動的応答予測モデルの開発 と実験による検証,土木学会論文集 A, Vol.65, No.3, pp.604-617, 2009.
- 石原孟, Muhammad Bilal Waris, 助川博之, ヒ ーブプレートと非静水圧の効果を考慮した浮体動 揺予測モデルの開発, 第 31 回風力エネルギー利用 シンポジウム, pp.209-212, 2009.
- Longbin Tao, Shunqing Cai, Heave motion suppression of a Spar with a heave plate, Ocean engineering 31, pp.669-692, 2004.
- N.Srinivasan et al., Damping controlled Response of a Truss Pontoon Semi-submersible with Heave Plates, Proc. of 24th Int. Conf. on OMA, 2005.
- 6) Det Norske Veritas, Offshore Standard, DNV-OS-J101, 2010.