浮体式洋上風力発電に関する研究*

(その1)洋上風況観測と洋上風力賦存量の評価

A Study of Floating Offshore Wind Turbine Systems

Part I An Offshore Wind Observation and Wind Energy Potential Assessment

```
助川 博之<sup>**</sup> 石原 孟<sup>***</sup> 山口 敦<sup>***</sup> 福本 幸成<sup>****</sup> 土谷 学<sup>*****</sup>
Hiroyuki SUKEGAWA Takeshi ISHIHARA Atsushi YAMAGUCHI Yukinari FUKUMOTO Manabu TUCHIYA
```

1. はじめに

日本の風力発電の導入量は 2006 年 7 月末現在で 108 万 kW に達している¹⁾. 一方で,近年の導入量の急速な拡 大により,陸上での適地不足が深刻な問題となっている.

世界各国で同様の問題が顕在化しており,洋上風力発 電によりこの問題を解決することが期待されている²¹³.風力 の開発が進んでいる欧州では,実際に洋上における大規 模ウインドファームが建設され運用が開始されている.日本 においても今後の風力発電拡大には,洋上風力発電を推 進することが重要な要因となると考えられる.

本研究では、洋上の風況を把握するために2004年9 月から2006年9月までの約2年間、福島県磐城沖ガス 田における風況を観測し、洋上における風速、風向、 風の乱れの特性を明らかにした.また、最初の1年間 の観測結果と地域気象モデル 4を用いて解析した値を 比較し、モデルの精度を検証した.そして地理情報シ ステムを用い、社会的・経済的制約条件を考慮した複 数のシナリオに対し、洋上風力発電賦存量を評価した.

2. 風況観測の概要5)

風況観測は,福島県楢葉町沖 37kmにある磐城沖ガス 田天然ガス掘削設備を利用して,海面からの高さ94mの場 所で行った.図1に洋上風況の観測位置図および磐城沖 ガス田と風向風速計を示す.風向風速計は7心光ファイバ 一方式で,観測データは現地に設置した2種類のデータロ ガーに記録し,それぞれ毎日1回,携帯電話による通信に て陸上に送信した.

平成 18 年 11 月 22 日第28回風力エネルギーシンポジウムにて講演 * ** 非会員 東京大学大学院工学系研究科 〒113-8656 文京区弥生 2-11-16 東京大学大学院工学系研究科 *** 会員 非会員 東京電力㈱技術開発研究所設備基盤技術グループ **** ***** 非会員 鹿島建設㈱環境本部新エネルギーグル-

最初の1年間 解析した値を て地理情報シ を考慮した複 ^{10.00}

の解析などを行った。).

3. 風況観測の結果

観測期間は2004年9月から2006年9月までの約2年

間, サンプリング間隔を2秒として,10分間の平均,最大,

最小の風速・風向と風速標準偏差のデータを取得した.ま

た 2005 年 12 月から 2006 年 9 月までの約 10 ヶ月間では、

サンプリング間隔を1秒として風速および風向の時系列デ

ータも取得し、パワースペクトル密度および乱れのスケール

観測結果の一例として, 2004 年 9 月から 2006 年 9 月ま

での約2年間の月平均風速を図2に示す、この結果より、

年による平均風速の差は少なく、一定の風速が期待でき

(年平均風速1年目7.5m/s,2年目7.3m/s),また夏場に

低風速,冬場に高風速となるという季節による風速の傾向

図2 月平均風速 風の乱れ強さを風向別(16 方位)に示したものと,風力発 電システムの安全要件が規定されている国際規格 IEC61400-1の中で洋上を含む乱れ強さの小さい地域に適 用されるCategory-Cの乱れ強さとの比較を図3に示す.ご く一部を除き IEC 規格より小さな値を示した結果となった. また各風向別に乱れ強さが異なる結果となった.風向別の 乱れ強さから IEC の値を引いた値を円グラフにしたものを 図4に示す.この図から分かるように,西側からの風向の乱

はないに、す.この因から方からように、皆風からの風向の記 れ強さは IEC 規格とほぼ一致しているのに対し、西側から 離れるに従い乱れ強さが IEC 規格より小さくなっていくこと が分かる.これは、西の方向には観測地点から37kmと比 較的近距離に陸があり、その影響を受けているためと思わ れる.特に阿武隈高地とその後方のいくつかの山脈の影響 が大きいと考えられる.また IEC の規格は、北海を中心と した内海を基準として考えているため、ある程度は陸の影 響を受ける乱れ強さの値となっていると予想される.この観 測における西側からの乱れ強さと一致したことは、そのため であると考えられる.

図4 IECと観測値の風の乱れ強さの差

3. 風況解析の概要

研究では風況を計算するためのメソスケール気象モデル として、地域気象モデル RAMS を使用した. RAMS は非静 水圧力学方程式を基礎とし、メソスケールの気象現象に支 配的な影響を与える放射過程,雲,土壌のモデルが組み 込まれている. 地表面の境界条件としては、大気の流れと 地面の放射吸収量に影響を与える地形,熱と力学的な境 界条件を与える土地利用,海水面温度を与える. 本研究で は地形は国土地理院の 50m メッシュ数値地図、土地利用 は国土交通省による国土数値情報「KS-202-1」,海水面温 度はNCAR 提供の全球1度グリッドの気候値を用いた. メソ

スケールの現象を 適切に再現させる ため、2 重にネステ ィングさせた格子を 用い、双方向に計 算結果を反映させ ながら計算を行っ た.本研究で対象 とする水平解像度 2kmのグリッド2を 図2に示す.

図4 本研究で用いた計算領域

4. 観測値と解析値の比較

磐城沖の観測値および解析値の月平均風速の比較を 図 5 に示す. 観測の年平均風速は 7.4m/s, 解析による年 平均風速は 7.1m/s となり, 予測誤差は-4.1%と非常に高い 精度を示していると言える. なお観測値は, 海面からの高さ を 70m に高度補正した後の数値とし, 解析値も同等の高さ での値で比較している.

風向の比較(風配図)を図 6 に示す. 解析値は, 11 月から3月までは5ヶ月間は北西から, それ以外の月は南北方向が主風向となっていて, 実測値をよく再現していることが分かる.

磐城沖近辺から相模湾沖近辺までの太平洋沿岸の年間 平均風速をこのモデルを用いて解析した結果を図7に示す. 沖合に向かうに従って平均風速が大きくなっていることがわ かる.この図で,沿岸からの距離(0,5,10,20,40km)の地点を 線で示したが、図 8 は、これらの線を南北方向に沿岸から の距離別に年間平均風速を示したものである。この図から 沿岸でも地点によりかなり風速に差がある、また沿岸からの 距離が増えるに従い各地点での風速の差が少なくなって いることが分かる。それと同時に、銚子付近では沿岸 0km でも年間平均風速が 7m/s を超えており、40km の沖合でも 依然として他の地点より高風速を保っていることが分かる。

このことから銚子付近は風力発電に適した地点であると 考えられる.

図7 年平均風速分布

図8 沿岸からの距離別風速

5. 関東地方沿岸域における洋上風力エネルギー賦存量 の評価

風力エネルギー賦存量とは現在の技術で取得可能な年間の最大電力量である.本研究では東京湾を除く関東地 方沿岸域の陸地から 50km までの範囲を対象とし,水深別, 海岸からの距離別に風力エネルギー賦存量を求めた.ま た,海域によっては社会的,経済的な理由により大規模洋 上ウィンドファームの建設が現実的でない海域も存在する ため,社会的制約条件および経済的制約条件を考慮した 賦存量も推定した.

5.1 使用した地理データ

今回, 賦存量の算出に使用した地理データを表 1 に示 す. また図 9 に本研究で使用した水深データ図を示す. 図 10 には漁業権, 港湾海域, 自然公園を示す. 海岸付近で は殆どの海域に漁業権が設定されていることがわかる. ま た東京湾内の大部分の海域が港湾となっているため, 本研 究では東京湾内を対象海域から除外した.

表1 制約条件と本研究で用いた地理データ

地理データ種別	使用したデータ	データ入手先		
水深	日本近海等深線データ	海洋情報研究センター		
海岸線	国土数值情報	国土交通省		
自然公園設定区域	国土数值情報	国土交通省		
漁業権設定区域	国土数值情報	国土交通省		
漁港エリア	国土数值情報	国土交通省		
港湾エリア	国土数值情報	国土交通省		

図9 対象領域付近の水深,図10 対象領域付近の規制区域

5.2 風車および風車配置

賦存量の算出にあたっては,風車および風車の配置を 仮定する必要がある.ヨーロッパで既に建設されている大 規模洋上ウィンドファームでは2MW級の風車が使用されて いる.そこで,本研究では定格出力が 2.4MW の三菱重工 業の MWT-92/2.4 を仮定し,賦存量を算出した.

賦存量は風車間隔にも依存する.本研究では,縦,横方 向にともに風車間隔をロータ直径 Dの8倍離して設置する と仮定し,賦存量を推定した.なお,風車間隔がロータ直径 の8倍であれば風車のウェイク(後流)の影響は小さいと考え られるため,本研究では風車のウェイクは考慮していない.

5.3 水深・海岸線からの距離別の賦存量

以上の方法を用いて,関東地方沿岸 50km 以内の洋上 における賦存量を海岸からの距離・水深別に求めた.本研 究で対象とした海域では合計で 286.54TWh/year の賦存 量が存在するという結果となった⁷⁾.これは東京電力の2003 年の年間電力販売量 276TWh を上回る値である⁸⁾.

しかし,これら全ての賦存量が利用可能とは限らない.表2からわかるように賦存量の大部分は水深500mを越える海域にあり利用が難しい可能性がある.また,水深10m以下の海域にも年間4.87TWhの賦存量があるが,そのほとんど

は海岸からの距離が 10km 以内の海域に集中しており,漁 業権等の社会的制約条件を考慮すると利用が難しい可能 性がある.このため次節では,経済的・社会的制約条件を 考慮した場合の賦存量について詳細に検討を行う.

		海岸からの距離(km)					
		0-10	10-20	20-30	30-40	40-50	計
水深(m)	0-10	4.77	0.00	0.05	0.05	0.00	4.87
	10-20	9.00	0.44	0.05	0.03	0.00	9.51
	20-100	22.49	24.55	5.92	0.42	0.00	53.38
	100-200	4.96	8.56	23.73	9.29	0.26	46.81
	200-300	2.23	1.24	5.28	6.60	0.82	16.18
	300-400	2.16	1.27	3.30	6.38	2.51	15.62
	400-500	1.75	2.61	1.69	5.89	3.58	15.53
	500-	5.95	24.26	21.89	29.05	43.50	124.65
	計	53.31	62.93	61.92	57.70	50.68	286.54

表2 水深・海岸からの距離別の賦存量(TWh/year)

5.4 社会的・経済的制約条件を考慮した賦存量

前節で算出した風力エネルギー賦存量のうち,社会的・ 経済的条件を考慮した賦存量を算定した.建設する海域 の水深は採用する基礎形式に大きく関係するため,水深が 20m 以下の海域においては着底型基礎を,20m 以上の海 域においては浮体型基礎を用いることとした.また浮体型 基礎を用いる場合でも水深が 500m を越えると経済的な理 由から建設が難しくなることが指摘されているため,浮体式 基礎の海域を水深 20m から 500mの間とした.

次に,大規模ウィンドファームを建設する際に漁業権,自 然公園等の規制により開発が困難と考えられるため,この 区域は除外した.また景観問題から沿岸10km 以内の海域 も開発対象から除外した.

最後に、ウィンドファームの経済性は実際の年間発電量 に依存する.年間発電量を評価する指標として設備利用率 がしばしば用いられるが、陸上では一般に設備利用率が 20%を超えることがウインドファームが経済的に成立する条 件であると言われている.洋上では建設、メンテナンス費用 が陸上に比べて高くなることが予想されることから経済的に 成立するための設備利用率はもう少し大きな値となると考え、 設備利用率が 30%以上となる海域を対象とした.

この条件で賦存量を検討すると,着底型基礎のみを利 用するとした場合は,賦存量は年間 0.21TWh のみとなった. これに対し,浮体式基礎が利用可能な場合には賦存量は 大幅に増大し,年間 100.59TWh に達する結果となった.

以上のことから,関東地方沿岸域において大規模に風力 エネルギーを利用するためには,浮体式基礎の開発が不 可欠であると言える.

6. まとめ

本研究では洋上風況の観測し,その特性を解明した.ま た観測結果とメソスケール気象モデルによる解析結果を比 較し,このモデルにより関東地方沿岸の洋上風況を予測し た. そして地理情報システムにより社会的,経済的制約条件,景観問題,設備利用率を考慮した風力エネルギー賦存量を算出した.以下に結論を示す.

- ・ 磐城沖ガス田の風況観測を2年間行い,年による平均 風速の差は少なく,秋から冬にかけて高風速,夏に低 風速となることが確認できた.
- ・ 磐城沖ガス田の風の乱れ強さは風向により大きく変化し、太平洋側からの風の乱れは IEC(Category-C)の規格よりかなり小さな値となり、陸からの距離が近い西側からの風の乱れは IEC の規格とほぼ一致した.
- ・ 風況解析モデルの検証を行った結果, 誤差は-4.1%と 高い精度を示した. また風配も観測値をよく再現でき た.
- 漁業権区域,港湾海域,自然公園区域ならびに景観 問題から沿岸10km以内の海域を除外し,設備利用率 が30%以上の海域を対象とすると,着底型基礎のみを 利用可能とすると,賦存量は年間0.21TWhであるが, 浮体式基礎も対象とすると,関東地方沿岸域で年間約 101TWhの賦存量が見込まれる.

参考文献

- Operating wind power capacity, Wind Power Monthly, Vol. 22, No. 7, p. 66, 2006.
- G. Gaudiosi: Offshore wind energy in the world context, *Proc. World Renewable Energy Conference*, pp. 899–904, 1996.
- European Wind Energy Association and Greenpeace: Wind force 12, 2004.
- 4) R.A. Pielke et al.: A Comprehensive Meteorological Modeling System - RAMS, *Meteorol. Atmos. Phys.*, Vol. 49, pp. 69-91, 1992. *Conference*, pp. 401-406, 1993.
- 5) 福本幸成,石原孟,土谷学:福島県沖37kmにおける 洋上風況観測,第27回風力エネルギー利用シンポジ ウム論文集, pp235-238, 2005.
- 6) 土谷学,石原孟,福本幸成,助川博之,大窪一正:洋 上風力発電導入に向けた洋上風況観測,第19回風工 学シンポジウム論文集,2006.
- 7) 石原孟,山口敦,佐々木庸平,藤野陽三:地域気象モ デルと地理情報システムを利用した洋上風力賦存量 の評価,第26回風力エネルギー利用シンポジウム論文 集,pp287-290,2004
- 東京電力株式会社広報部: 数表で見る東京電力 平 成16年度, 2004.