着氷雪送電線部分模型の風洞内ギャロッピング再現実験

電力中央研究所	正会員	清水韓	}夫 *1
東京大学大学院	正会員	石原	孟*2
東京大学大学院	学生会員	ファバン	ጋ ック ^{*2}

<u>1. はじめに</u>

風を受ける矩形柱等の自励振動現象はギャロッピング と称され、その発生メカニズムや振動性状については、 主に矩形断面について数多くの研究がなされてきた[1]. 一方、着氷雪した送電線の風による自励振動現象もギャ ロッピングと呼ばれているが、これまで、電線に作用 する風速、着氷雪の形状と空力特性、電線の応答、な どのデータが一貫して得られた例[2]は極めて少なく、そ の挙動分析は、上記矩形柱等の例に比較して、未だ不十 分と思われる.こうした背景の下、筆者らは、着氷雪4 導体および単導体の部分模型を対象とした風洞実験によ り、一様流中でギャロッピングを再現し、上記 ~ の データを取得するとともに、振動特性の把握を試みた. 2.実験方法

実験には,東京大学の全径間風洞を用いた.実験対象 の模型は,これまでに実施した三分力天秤実験および大 振幅回転加振実験[3]と同様,着氷雪4導体および単導体 の部分模型とした.これらの諸元を表1,着氷雪形状を 図1に示す.各部分模型4-1.00Dおよび1-1.00Dは,図2, 3に示すように4本のワイヤーを用いて風洞内に架設し た.図のように,振動系の風上側に風速測定用のピトー 管を設置し,模型の端板には,変位計測のターゲットと なるマーカー2箇所を貼付けた.また,図に示すワイヤー の絞りは,系のねじり(模型軸回りの回転)方向の剛性 を調整する措置であり,本文には,絞りの位置でワイ ヤーの間隔を0とした場合の結果を示す.なお,ワイヤー 1本当りの張力は,絞りなしの状態で58.8Nに調整した.

風速は,先ず5m/sとし,次に7~10m/sまで1m/sステッ プで増加させ,以降,15m/sまで0.5m/sステップで増加 させた後,同様のステップで7m/sまで減少させた.変位 の計測はカラートラッカーにより,各風速ステップごと に,ピトー管のモニター出力が安定した値を示すのを 待って,サンプリングタイム1/30秒で120秒間行った. 3.実験結果と考察

3.1 風速と最大振幅との関係

測定結果として,風速と鉛直方向およびねじり角の最 大振幅との関係を,各部分模型について図4,5に示す. 図より,いずれの部分模型についても,ある風速を境に 最大振幅が0に近い値から急激に増加し,ギャロッピン グの発生が確認できる.また,風速が低下する過程で,最 大振幅が0に近い値に戻り,ギャロッピングが止まることがわかる.図中には,風速の増減方向を矢印で示した. 表2には,ギャロッピングが発生する風速,およびこれが止まる1ステップ前の風速を示す.図4,5と表2より, ギャロッピングが発生する風速を,止まる風速が下回る, ヒステリシスの存在が認められる.

3.2 ギャロッピングの発生過程の解明

本研究では,部分模型4-1.00Dの架設時,風速11.5m/s においてギャロッピングの発生からリミットサイクルに 至る過渡応答が,図6のとおり測定された.以下では,こ の結果と既往のギャロッピングの発生条件との関係に基 づき,発生過程について考察する.

既往のギャロッピングの発生条件としては,準定常理論に基づく, Den Hartog の条件式[4]が挙げられる.

 $dC_L / d\theta + C_D < 0$ (1) ここに, C_D : 抗力係数, C_L : 揚力係数, θ : 迎え角である. 4-1.00Dの C_D , C_L および空力モーメント係数 C_M は図7に 示すとおりであり[3], 図中の C_D , C_L が式(1)を満足する 迎え角の範囲は,以下のとおりとなる(単位:度).

 $12 < \theta < 20, \ 64 < \theta < 76, \ 172 < \theta < 176$ (2)

一方,図6(b)のねじり角の時刻歴に対し,過渡応答の時間帯を拡大して示せば,図8となる.図8において,ギャロッピングの発生の瞬間,すなわち過渡応答の第一波の振幅は10~20度の間となっており,式(2)の迎え角の範囲内にあることがわかる.なお,風向は水平であることから模型のねじり角は着氷雪の迎え角と等価といえる.

以上のことから,本研究の条件下では,模型のねじり 角が増加し,着氷雪の迎え角がDen Hartogのギャロッピ ングの条件式[4]を満たした段階で,ギャロッピングが発 生したことが検証された.

4.まとめ

本研究により,空力特性が明らかな4導体および単導体部分模型のギャロッピング挙動が,一貫性のある風速および応答変位データとして測定された.また,本研究の実験条件下におけるギャロッピングについては,着氷雪の迎え角がDen Hartogの条件式を満たした段階で発生し,発生風速は,風速の増加過程と減少過程との間で異なるヒステリシスを示すことが判明した. 謝辞

本研究の風洞実験の実施については,九州工業大学工

- キーワード:ギャロッピング,風洞実験,送電線,4導体,着氷雪,空力特性
- *1 〒 270-1194 千葉県我孫子市我孫子 1646 TEL 070-5877-5534 FAX 04-7183-2962
- *2 〒 113-8656 東京都文京区本郷 7-3-1 TEL 03-5841-6096 FAX 03-5841-7454

1-335

学部建設社会工学科の木村吉郎先生にご指導,多大なご助力 を頂きました.ここに心から感謝の意を表します. 参考文献

[1]例えば Parkinson, G. V.: Aeroelastic Galloping in one Degree of Freedom, Proc. Int. Conf. Wind Effects on Buildings and Structures (Teddington), Her Majesty's Stationary Office, 1963.

[2]井上学,木村吉郎,藤野陽三,雪野昭實,井上浩男:着 氷4導体送電線に作用する動的空気力の特性に関する一 考察,土木学会第54回年次学術講演概要集第1部,pp.742-743,1999.

[3]清水幹夫,石原孟,ファバンフック:風洞実験による着 氷雪送電線の定常および非定常空力特性に関する研究, 第18回風工学シンポジウム論文集,pp. 245-250, 2004.

[4]Den Hartog, J. P. : Mechanical Vibrations, McGraw-Hill, 1956.

表1 試験体の諸元 _____ 質量(g) 名称 導体数 導体外形(mm) 導体長(mm) 4-1.00D 1270 19 4325 4 1-1.00D 1270 30 3647 1

図1 着氷雪形状: 4-1.00Dの導体部断面図

