負圧維持建屋における漏洩実験

○ 老川進（清水建設(株)技術研究所）
孟 岩（清水建設(株)技術研究所）

1. はじめに
建屋内で発生した有害物質の外部への漏洩防止を考慮すべき施設においては、建屋内を負圧に保つ負圧維持装置が設備される。装置設計には、必要とする排気風量と圧力損失などの仕様を定めることが必要である。本研究では、外部風と排気風量の関連を調べるために、風洞に設置したモデル建屋内で発生させたトレーサガスが屋根開口から漏洩する状況を計測した。

2. 実験方法
測定部が9.9H×1.1W×5.4L（単位m）の大きさの風洞に直方体形状（辺長がW=16cmの正方形平面形状、高さH=8cm）の建屋モデルを風に対して前縁が直角になるように設置した。上流の流れは、縮尺1/500に相当する大気境界層（べき指数0.2）を作成し、建物高さの風速を1〜4m/sの範囲で変化させた。建屋前面中央には通気開口があり（20mm幅）、建屋下部に設けた排気口を通じて排気流量を制御した。トレーサガスは純エタン（C₂H₆）を用い400cc/minの割合で建屋内に排出した（排気無しの排気速度：2.1cm/s）。漏洩濃度は屋根開口の中央点にて60秒間の平均濃度を炭素化水素計により計測した。また、微差圧計にて建屋面と建屋内の圧力差を測定した。濃度のデータは無次元化濃度C∗（=CU_H²/Qs）で整理した。ここで、Cは測定点におけるガス濃度を、U_Hは建物高さHの風速を、Q_sは排出源強度を表す。図1に風洞実験の概要図を示す。

3. 実験結果
図2には、風速を1〜4m/sの範囲で変化させた時の屋根面間の漏洩濃度C∗と屋根開口部での排気速度Ve（=排気流量/屋根開口面積）との関係を示す。風速が強いほど屋根通気口からの漏洩濃度の値が大きくならない。図3には、風速と漏洩抑制可能となる排気速度Ve_cの関係を示した。Ve_cは、風速U_H=1m/sおよび4.0m/sで、各々Ve_c=0.5m/s, 2.1m/sである。漏洩抑制の場合には風速が強いほど大きな排気速度が必要となる。また、漏洩防止に必要な排気風量は、Ve_cに開口面積を乗じて求められる。

図4には、内圧係数C_Pi（=（建屋内の圧力Pi－基準点での静圧Ps）/基準圧力P）と排気速度Veの関係を示した。図中の点線は屋根面の風圧力を表す外圧係数C_Peを示した。風速が弱いほど、また排気速度が大きいほど、C_Piの値はC_Pe（=0.5）と離れる。この差が大きいほど漏洩防止効果が大きくならない。