Fukushima Floating Offshore Wind Farm Demonstration Project (Fukushima FORWARD)

Takeshi ISHIHARA The University of Tokyo

A Mitsubishi Corporation

HITACHI Inspire the Next

FURUKAWA ELECTRIC

Contents

Background and objective

■ Technical challenges and solutions

Social acceptance and collaboration

Conclusion and perspectives

Background

Benefits

- Offshore wind energy potential along Japan is 1.2TW, while the total capacity of the conventional sources is 0.2TW.
- More than 80% of the offshore wind energy potential in Japan are located at deep water.

Prediction

Challenges

- Floater concepts
- Measurement and technology
- Floating substation
- Cost efficiency
- Advanced Material

Offshore wind energy potential in Japan

Compact semi-sub

Advanced spar

Fukushima FORWARD project

- Ideal area for floating offshore wind
 - Large wind energy potential at 20km-50km from coast, where water depth is 100m–200m
 - Strong power grid for nuclear and thermal power plants
 - Port facilities available

Benefits

The accumulation of wind energy industry will help the restoration of this region.

Facility specifications of FORWARD project

Facility Name	Scale	Wind Turbine type	Floater type	Project Term
Floating Wind Turbine I	2MW	Downwind Type	Compact Semi-Sub	First
Floating Wind Turbine II	7MW	Upwind Type	V-shape Semi-Sub	Second
Floating Wind Turbine III	7MW	Upwind Type	Advanced Spar	Second
Floating Substation	25MVA/66kV	Substation	Advanced Spar	First

Work packages

1 Preliminary study

- site assessment
- preliminary design

2 Measurement / prediction

- metocean
- floater motion
- substation / power cable

3 Floating wind turbines

- wind turbine
- floater / mooring
- advanced material

4 Grid integration

- floating substation
- dynamic cables

Phase I

Phase II

FURUKAWA ELECTRIC

5 Operation & Maintenance

- floater / mooring
- wind turbine
- substation / power cable

6 Environment issue

- environmental assessment
- marine navigation safety
- collaboration with fishery

7 Documentation

- technical review
- manual
- project report

8 Public relation

- communication centre
- seminar and symposium

A Mitsubishi Corporation

IHI MARINE UNITED

Presentation of consortium members

Consortium Member	Main Rule		
Marubeni Corporation	[Project Integrator]		
	Pre-Studies, Approval and Licensing, Operation and		
	Maintenance, Collaboration with Fishery Industry		
The University of Tokyo	[Technical Advisor]		
	Measurement and Prediction Technology, Navigation		
	Safety, Public relation		
Mitsubishi Corporation	Pre-Studies, Approval and Licensing, Environmental		
	Assessment		
Mitsubishi Heavy Industries, Ltd.	V-Shape Semi-Sub Type Floater		
IHI Marine United Inc.	Advanced Spar Type Floater and Floating Substation		
Mitsui Engineering & Shipbuilding Co., Ltd.	Compact Semi-Sub Type Floater		
Nippon Steel Corporation	Advanced Steel		
Hitachi, Ltd.	Floating Electric Power Substation		
Furukawa Electric Co., Ltd.	Undersea and Dynamic Cables		
Shimizu Corporation	Pre-Studies, Construction and Installation Technology		
Mizuho Information & Research Institute, Inc.	Documentation, Committee Operations		

A Mitsubishi Corporation

子どもたちに誇れるしごとを。

MIZU CORPORATION 🕢

MIZHO

FURUKAWA ELECTRIC

FORWARD vision and challenges

Green growth in Fukushima

- Industry accumulation
- Employment
- Restoration

Fukushima FORWARD

Technical challenge

- Floater concepts
- Measurement and prediction
- Floating substation
- Cost efficiency
- Advanced material

Social acceptance

- Navigation safety
- Environmental assessment
- Collaboration with fishery
- Public relation

Development phases and key success factors

2 Phases:

3 key success factors:

Design / Test / Improvement

Cost efficiency / industrialization

Technology maturity / Social acceptance

🙏 Mitsubishi Corporation

FURUKAWA ELECTRIC

