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A B S T R A C T   

This study proposes a novel probabilistic power curve model for wind turbine and combines it with a hybrid wind 
farm model to quantify the accuracy and uncertainty of power prediction of wind farm over complex terrain with 
low computational cost. The proposed probabilistic power curve model for an active stall-regulated turbine is 
expressed by the beta distribution to estimate the uncertainty of power output at a certain wind speed. The 
predicted mean value and standard deviation of power output by the proposed model show favorable agreement 
with the measurement, while the conventional deterministic model cannot estimate the uncertainty of power 
output from wind turbines at all. The hybrid wind farm flow model is then presented, in which the effects of local 
terrain and surface roughness on the wind speed, wind direction and turbulence intensity are taken into account 
by the CFD simulation, and the wind turbine wakes are represented by an advanced wake model. The predicted 
wind speed and turbulence intensity show good agreement with those measured in a wind farm over complex 
terrain in the north of Japan. Finally, the proposed probabilistic power curve model is combined with the hybrid 
farm flow model to estimate the mean value and standard deviation of wind farm power production and is 
validated by the field measurement. The weighted mean absolute percentage error in mean value is reduced from 
18.1% to 7.2% with consideration of wake effects and that in standard deviation is reduced from 100% to 15.6% 
by using the proposed probabilistic power curve model.   

1. Introduction 

Accurate prediction of wind farm power production is not only 
important for developers to identify potential energy, but also for grid 
operators to support the system scheduling and unit commitment. 
However, as outlined in the WindFarmer theory manual [1], the energy 
production calculation of a wind farm is always subject to three main 
areas of uncertainty: measurement uncertainty due to anemometry 
characteristics of devices at the reference site, wind condition variability 
due to the statistical fluctuation of wind resources over the historical 
period, and wind farm modelling uncertainty. The anemometry un
certainties can be estimated following the procedures defined by IEC 
61400-12-1 [2], and the wind condition variability are usually evalu
ated through analysis of a long-term measurement data. In a wind farm 
modelling, the incident wind speeds at each turbine are firstly estimated 
with consideration of wind turbine wakes, topographic and site rough
ness effects, and then inputted to the power curve of the turbine to 
predict the power production for the whole wind farm. Thus, modelling 

uncertainties mainly arise from two aspects: wind speed prediction error 
in wake model and flow model over terrain, and power output error in 
wind turbine power curve (WTPC) model. 

Many researches have been conducted to improve the accuracy of 
WTPC model. As summarized by Wang et al. [3], WTPC models can be 
classified into two main categories: deterministic model and probabi
listic model. Deterministic models can be divided into discrete, curve 
fitting, and nonparametric methods. (1) The discrete method or 
so-called Bin method divides the entire wind speed range into several 
intervals with a bin of 0.5 m/s, and averaged pairs of wind speed and 
power in each bin are obtained by the procedures as defined in IEC 
61400-12-1 (2005). The WTPC provided by the manufacture is normally 
presented in this way as well. (2) The curve fitting method use a set of 
piecewise or a single continuous mathematical expression to fit the 
relationship between wind speed and power, including linear equations 
[4], polynomial functions [5], and other S-shaped functions, e.g. Sig
moid function [6], and logistic functions [7,8]. (3) Nonparametric 
model does not have an explicit mathematical function but is 
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constructed through undefined or virtual function with a data mining 
algorithm to approximate the relationship between wind condition and 
power output. Commonly used nonparametric methods include six 
categories: regression model [9,10], neural network [11], clustering 
method [12], k-nearest neighbor model (KNN) [13], adaptive 
neuro-fuzzy interference system (ANFIS) model [14] and copula model 
[15,16]. The deterministic model approximates the power with a spe
cific one-to-one relationship, however, the actual wind turbine produces 
different powers even if the wind speed at the hub height is the same. 
This is due to the complex wind conditions (turbulence, air density, wind 
shear, etc.) and wind turbine operation conditions (rotor speed, pitch 
angle, aerodynamics of turbine blades, etc.). 

In order to overcome the limitation of deterministic model, some 
researches have been shifting their attention to the probabilistic method 
to estimate the uncertainty of WTPC and to improve the reliability for 
the WTPC based wind farm power prediction. The probabilistic WTPC 
model is constructed with the assumption that at a particular wind 
speed, the corresponding wind power is considered as a random vari
able. It can be presented by a mean power with a standard deviation 
[17], a series of power curves by quantiles [18], percentiles [19], or 
upper and lower bounds under certain confidence levels [20]. The 
probabilistic WTPC model can also be divided to parametric type and 
nonparametric type based on the approach to describe the distribution 
of power. For the former one, the variation of power output within a 
wind speed bin was assumed to follow a normal distribution, where the 
standard deviation in each bin was assumed to be constant [21] or 
varied for the pitch-controlled wind turbine [17,19]. However, as 
pointed by Lange and Focken [22], the power prediction error in terms 
of the wind speed distribution for small and large wind speeds are 
strongly deformed to be non-Gaussian and no longer symmetric. It im
plies that the normal distribution is not properly to describe the un
certainty of power output for all wind speed region. Different from the 
parametric method which simulates the WTPC uncertainty by know 
distribution or computing statistical parameters, recently nonpara
metric methodologies, like neural networks, with no assumption on any 

known distribution or statistical properties are employed to build the 
probabilistic WTPC [18,20,23]. Nevertheless, these data-driven method 
needs a very careful process of data collection, clearing, training and 
verification, which takes higher computational cost and causes larger 
prediction error when these trained modules are used for different wind 
conditions and wind turbines compared to parametric model. 

By utilizing a probabilistic WTPC model, Kwon [24] presented a 
framework to assess the uncertainty of AEP of a wind turbine based on a 
Monte-Carlo simulation, where the natural variability of wind condi
tions and error for prediction of long-term wind speed are also consid
ered using probabilistic models. To sum up, most of the previous 
researches worked on the uncertainty estimation of power output for a 
single wind turbine, while very few works address that for a whole wind 
farm. To do this, in addition to the power curve model, a wind farm flow 
model including the layout wakes and topographical effects is necessary 
as well. Although FLORIS [25] can predict the wind speed and wind 
power in a wind farm over flat terrain, the topographic effects have not 
been incorporated yet. WindFarmer [1] is used for wind farm layout 
optimization over complex terrain with the modified PARK model, 
however, the multiple wake effects are not accurately considered as 
pointed by Qian and Ishihara [26]. 

Therefore, this study proposes a novel probabilistic model with two 
parameters for WTPC to quantify the uncertainty of power production of 
wind farm over complex terrain at low computational cost. Section 2 
introduces the methodology, including the proposed probabilistic power 
curve model, a hybrid wind farm flow model, and the onsite measure
ments setup. In section 3, the proposed models for prediction of wind 
farm flow and power production are validated by the observed data. 
Conclusions are summarized in section 4. 

2. Methodology 

The framework developed in this study to predict the power pro
duction of wind farm over complex terrain is shown in Fig. 1. Section 2.1 
elaborates the formulation of a novel probabilistic power curve model, 

Fig. 1. Schematic of the on-site measurement-based power prediction for a wind farm over complex terrain.  
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which can estimate the expected power output with probability distri
bution. A hybrid wind farm flow model is then introduced in section 2.2, 
which involves numerical simulation of flow field over complex terrain 
without wind turbines and prediction of layout effects in the wind farm 
by an analytical wake model. The wind farm information including wind 
turbines and measurement device setups are described in section 2.3. 

2.1. A novel probabilistic power curve model 

As mentioned in Section 1, the existing probabilistic models mostly 
take the assumption that the power fluctuation follows a normal dis
tribution which has a non-bounded symmetric bell-shape with respect to 
the mean value. However, since the power output is normally bounded 
with the low limit of zero and high limit of rated value, the power dis
tribution will be asymmetrical near the cut in wind speed and rated wind 
speed, especially if the power is highly scatted [22]. In addition, when 
the wind speed is larger than rated one or lower than cut-in wind speed, 
the power distribution is more likely to be J-shaped or reverse-J-shaped 
as shown in Fig. 2. Instead of the normal density function, the beta 
density function is used to build a novel probabilistic WTPC model in 
this study since it can take a wide variety of different shapes including 
symmetrical or asymmetrical bell-shape, J-shape using only two pa
rameters. The model is described as follows. 

The Beta distribution is a family of continuous probability distribu
tions defined in the interval [0, 1], thus, if the power output P is 
normalized by the rated power Pr, the normalized power output P̂ at a 
certain wind speed is assumed to follow a beta distribution as follows. 

P̂ =
P
Pr

(1)  

P̂ ∼ Beta(α, β) (2)  

where α and β are two positive parameters which appear as exponents of 
the random variable and control the shape of the distribution. The 
probability density function (PDF) of the normalized power is expressed 
as follows: 

f (P̂;α, β) =
P̂

α− 1
(1 − P̂)

B(α, β)
(3)  

where B is the beta function which is a normalization constant to ensure 
that the total probability is 1 and defined by the integral: 

B(α, β) =
∫1

0

tα− 1(1 − t)β− 1dt (4) 

The mean value μ
P̂ 

and standard deviation σ
P̂ 

of the normalized 
power at a certain wind speed can be theoretically obtained as 

μ
P̂
=

α
α + β

(5)  

σ
P̂
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
αβ

(α + β)2
(α + β + 1)

√

(6) 

If the mean value and the standard deviation of the power at each 
wind speed are available, the shape parameters of α and β can be directly 
derived as follows: 

α=
μ

P̂
2 − μ

P̂
3

σ
P̂

2 − μ
P̂

(7)  

β=
μ

P̂
− 2μ

P̂
2 + μ

P̂
3

σ
P̂

2 + μ
P̂
− 1 (8) 

Since the above obtained α and β are discrete and may has uncer
tainty due to the limited amount of data at a certain bin of wind speed, in 
this study, they are modelled as exponential functions of wind speed as 
follows: 

α = m exp[n1(Û − Ûm) ] (9)  

β = m exp[n2(Û − Ûm) ] (10)  

where m and n are constants identified by the measurement data. The 
detailed explanations of curve fitting for the shape parameters α and β 
are described in section 3.1. Û is the wind speed normalized by rated 
wind speed Ur and expressed as 

Û =
U
Ur

(11) 

The shape of beta density function is expected to be symmetric (α =

β) at the normalized median wind speed Ûm, which is the midpoint 
between the cut-in wind speed Uin and the rated wind speed Ur as 
defined in the following equation: 

Ûm =
Uin + Ur

2Ur
(12) 

The probabilistic WTPC model is implemented to predict the mean 
value and standard deviation of power output at a certain wind speed U 
as follows 

μP(U)= μ
P̂
(Un)⋅Pr (13) 

Fig. 2. Schematic of the probabilistic wind turbine power curve model: (a) normal distribution model and (b) beta distribution model.  
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σP(U)= σ
P̂
(Un)⋅Pr (14)  

where Un is a corrected 10-min mean wind speed to consider the effect of 
air density on the power curve following the approach in IEC 61400-12- 
1 (2005) as 

Un =U
(

ρ
ρ0

)1/3

(15)  

where ρ0 is the standard air density (1.225 kg/m3). The air density ρ (kg/
m3) at the turbine hub height is calculated using the ideal gas law, 
expressed as a function of temperature t (◦ C) and pressure p (Pa) as 

ρ= p
R(t + 273.15)

(16)  

where R is the gas constant for dry air (287.058 J/kgK). The atmospheric 
pressure p and temperature t at the turbine hub height are calculated 
based on the Barometric formula as follows 

tpred
target = tobs

ref −
(
htarget − href

)
L (17)  

ppred
target = pobs

ref

[
tpred
target + 273.5
tobs
ref + 273.5

]5.257

(18)  

where htarget is the altitude of wind turbine hub height, L is the tem
perature lapse rate with the value of 0.0065 K/m, tobs

ref and pobs
ref are the 

onsite measured temperature and pressure at the reference site with the 
altitude of href . 

2.2. A hybrid wind farm flow model 

A hybrid framework for onsite-measurement-based wind farm flow 
prediction over complex terrain is introduced by Qian and Ishihara [27]. 
The detailed procedures to set up the hybrid framework are illustrated in 
Fig. 1. 

Firstly, based on the digital elevation model (DEM) and the surface 
roughness database (SRD), CFD simulations without turbines are per
formed for 16 sectors to provide a normalized wind field information. In 
this study, LES with Smagorinsky-Lill model in ANSYS Fluent 16.2 [28] 
is used to simulate the wind filed over complex terrain. The finite vol
ume method (FVM) is applied for the discretization of the governing 
partial differential equations. The bounded central difference scheme is 
used for the interpolation of velocities. SIMPLE (semi-implicit pressure 

linked equations) algorithm is employed for solving the discretized 
equations. A second-order implicit scheme is adopted to approximate 
the time derivatives for unsteady term. 

The wind speed ratio CCFD
U , the turbulent standard deviation ratio 

CCFD
σ , and the changes in wind direction ΔθCFD between the target site 

and reference site are obtained and stored as functions of wind sector n 
as follows: 

CCFD
U (x, y, z, n)=

UCFD
target(x, y, z, n)

UCFD
ref

(
xref , yref , zref , n

) (19)  

CCFD
σ (x, y, z, n)=

σCFD
target(x, y, z, n)

σCFD
ref

(
xref , yref , zref , n

) (20)  

ΔθCFD (x, y, z, n)= θCFD
target(x, y, z, n) − θCFD

ref

(
xref , yref , zref , n

)
(21) 

Secondly, the on-site measurement provides the measured wind 
speed Uobs

ref , turbulence standard deviation σobs
ref , and wind direction θobs

ref at 
the reference height where the observation is not affected by the wind 
turbine wakes in the wind farm. 

Subsequently, the wind field without the effects of turbines including 
wind speeds Upred,0

target(x, y, z), turbulence standard deviation σpred,0
target(x, y, z)

and wind direction θpred,0
target(x, y, z) at the target site are estimated 

following the approach by Misu and Ishihara [29] with the expressions 
as: 

Upred,0
target (x, y, z)=Uobs

ref ⋅CCFD
U

(
x, y, z, θobs

ref

)
(22)  

σpred,0
target (x, y, z)= σobs

ref ⋅CCFD
σ

(
x, y, z, θobs

ref

)
(23)  

θpred,0
target (x, y, z)= θobs

ref + ⋅θCFD

(
x, y, z, θobs

ref

)
(24)  

where CCFD
U (x, y, z, θobs

ref ), CCFD
σ (x, y, z, θobs

ref ) and ΔθCFD(x, y, z, θobs
ref ) are ob

tained by a linear interpolation on the stored data set as: 

CCFD
U

(
θobs

ref

)
=CCFD

U (n) + a
(
CCFD

U (n+ 1) − CCFD
U (n)

)
(25)  

CCFD
σ

(
θobs

ref

)
=CCFD

σ (n) + a
(
CCFD

σ (n+ 1) − CCFD
σ (n)

)
(26)  

ΔθCFD
(

θobs
ref

)
=ΔθCFD(n) + a

(
ΔθCFD(n+ 1) − ΔθCFD(n)

)
(27) 

Table 1 
Summary of the Ishihara-Qian’ wake model.  

Wake model Formulas Parameters 

Wake width σ
D

= k* x
D
+ ε* , Dw = 4

̅̅̅̅̅̅̅̅̅̅
2ln2

√
σ k* = 0.11C′ 1.07

T I0.20
a 

ε* = 0.23C′
T − 0.25I0.17

a 

CT
′

= CT(Uh, γ)cos γ, Ia ≥ 0.03 
Velocity deficit 

ΔU(x,y,z)/Uh =
1

{a + b⋅x/D + c(1 + x/D)− 2
}

2⋅exp
(

−
r2

2σ2

)

r =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(y − yd)
2
+ (z − H)

2
√

a = 0.93C′ − 0.75
T I0.17

a 

b = 0.42C′
T0.6I0.2a 

c = 0.15C′
T − 0.25I− 0.7

a 

Added turbulence 
Δσu(x,y, z)/Uh =

1
d + e⋅x/D + f(1 + x/D)− 2

{

k1exp

(

−
(r − D/2)2

2σ2

)

+ k2exp
(
−

(r + D/2)2

2σ2

)}

− ΔIa 

ΔIa =

⎧
⎪⎨

⎪⎩

0 else

Iasin2
(

π H − z
D

)

cos 2
(

π y
D

)
(0 ≤ z < H, |y| ≤ D)

d = 2.3C′ − 1.2
T , e = 1.0I0.1a 

f = 0.7C′
T − 3.2I− 0.45

a 

k1 =

{
cos2(π/2⋅(r/D − 0.5)) r/D ≤ 0.5
1 r/D > 0.5 

k2 =

{
cos2(π/2⋅(r/D + 0.5)) r/D ≤ 0.5
0 r/D > 0.5 

Deflection 

yd(x)
D

=

⎧
⎪⎨

⎪⎩

θ0
x
D

(x ≤ x0)

̅̅̅̅̅̅
C′

T
√

sinγ
18.24k∗cosγ

ln

⃒
⃒
⃒
⃒
⃒

(σ0/D + 0.21
̅̅̅̅̅̅

C′
T

√

)(σ/D − 0.21
̅̅̅̅̅̅

C′
T

√

)

(σ0/D − 0.21
̅̅̅̅̅̅

C′
T

√

)(σ/D + 0.21
̅̅̅̅̅̅

C′
T

√

)

⃒
⃒
⃒
⃒
⃒
+ θ0

x0

D
(x > x0)

θ0 =
0.3γ
cosγ

(1 −
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − CT

′
√

)

σ0

D
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

CT
′
( sinγ

44.4θ0cosγ
+ 0.042

)√

x0

D
=

σ0/D − ε*

k∗
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where a is a proportional coefficient expressed by 

a=
θobs

ref − θCFD
ref (n)

θCFD
ref (n + 1) − θCFD

ref (n)
(28)  

n and n + 1 denote the two adjacent wind sectors determined by the 
measured wind direction at reference site as 

θobs
ref ∈

(
θCFD

ref (n), θCFD
ref (n+ 1)

)
(29)  

where θCFD
ref (n) and θCFD

ref (n+1) are wind directions obtained by CFD 
simulation for inlet flow direction sectors n and n + 1 at the reference 
site. 

After obtaining the initial wind condition at each turbine location, 
wind turbine wake effects need to be evaluated. Since the wind turbine 
wake is significantly affected by the local variation of wind speed, wind 
direction and turbulence induced by terrain, an attention needs to be 
paid to the choice of wake model. The Gaussian-based analytical wake 
model proposed by Refs. [30,31], noted as Ishihara-Qian model, which 
provides a three-dimensional wake characteristic including wake width, 
velocity deficit, added turbulence, as well as wake deflection caused by 
yaw or inclination offset. Recently, the Ishihara-Qian model are 
extended for multiple wake modelling, which shows good agreement 
with the power obtained from numerical simulations and field 

measurements in wind farms [26]. Based on the above considerations, 
the Ishihara-Qian model is utilized in this study for wind farm flow 
modelling. The detailed formula and parameters of wake model are 
summarized in Table 1, where the rotor onset wind speed Uh,i and tur
bulence intensity Ia,i will be used for multiple wake prediction to replace 
the Uh and Ia of ambient wind condition at the hub height. 

Wind turbines over a terrain generally experience a non-uniform 
inflow due to the terrain effects and wakes from upstream turbines as 
well. Hence, the equivalent wind speed Uh,i and turbulence intensity Ia,i 
on the rotor, i.e., the rotor onset wind speed and turbulence intensity are 
firstly evaluated. As shown in Eqs. (28) and (29), the rotor onset Uh,i is 
calculated by directly performing a geometric averaging of wind speed U 
over the rotor, while rotor onset Ia,i is calculated by the root mean of 
squares of streamwise turbulence standard deviation σu over the rotor 
divided by the rotor onset wind speed Uh,i. To consider the wake in
teractions in wind farm, the wake superposition approach proposed by 
Qian and Ishihara [26] are applied here as well. 

Uh,i =
1
A

∫

rotor

U(xi, y, z)dA (30)  

Ia,i =
1

AUh,i

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∫

rotor

σ2
u(xi, y, z)dA

√
√
√
√ (31) 

Fig. 3. Test site in the Tomamae wind farm: (a) location of Tomamae; (b) aerial picture of wind farm; (c) wind turbine and its dimensions; (d) layout of the wind farm 
and measurement where the white open circles denote the location of each wind turbine, the red square and the blue triangles indicate the position of LiDAR and Met- 
masts (No.1, No.2 and No.3 from north to south) respectively. 
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where xi denotes the streamwise location of turbine, and A is the area of 
the rotor. 

Finally, by superposing wake effects onto the pre-computed initial 
flow field, the wind conditions at the target sites are obtained as: 

Upred
target(x, y, z)=Upred,0

target (x, y, z) − ΔU(x, y, z) (32)  

Ipred
target(x, y, z)=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

σpred,0
target (x, y, z)2

+ Δσ(x, y, z)2
√

Upred
target(x, y, z)

(33)  

θpred
target(x, y, z)= θpred,0

target (x, y, z) (34)  

where ΔU and Δσ are the turbine wake induced velocity deficit and 
added turbulence standard deviation calculated by using the analytical 
model as shown in Table 1. The parameters in the wake model are 
described in detail in Refs. [30,31]. 

2.3. Description of wind farm and measurement data 

In this study, a field measurement campaign is conducted at the 
Tomamae wind farm, located in Hokkaido facing the Japan Sea. The 
prominent topographic feature of this site is a steep escarpment along 
the west coast as shown in Fig. 3. In addition, the east onshore site is 
mainly characterized by the ranch, farmland, grass, and nearby 

Table 2 
Specification of Bonus BS54/1000 wind turbine.  

Parameter Value 

Rated capacity Pr 1000 kW 
Hub height H 45 m 
Rotor diameter D 54.2 m 
Cut-in wind speed Uin 3 m/s 
Cut-out wind speed Uout 25 m/s 
Rated wind speed Ur 15 m/s 
Rotor speed Fixed speed, 14 rpm/21 rpm 
Power control Active stall-regulated  

Fig. 4. Reference wind condition at the height of 120 m measured by the Doppler LiDAR from November 2015 to January 2016: (a) wind rose, (b) frequency 
distribution of wind speeds and (c) distribution of turbulence intensity versus wind speed. 

Fig. 5. Time series of 10-minutue averaged (a) atmospheric pressure and (b) temperature measured at the height of 75 m by Met-mast No.1.  
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buildings and forests, which adds to the complexity of the land surface 
roughness. Comprehensive measurement campaigns were carried out 
successively in the Tomamae wind farm, including a ground-based 
vertical profile LIDAR from November 2015 to January 2016 as 
described in Qian and Ishihara [27]; three Met-masts and Supervisory 
Control and Data Acquisition (SCADA) for each wind turbine from 
November 2015 to November 2017. The Mat-mast is a lattice tower 
equipped with anemometers measuring the wind speed between heights 
10 m and 80 m at an interval of 10 m, wind vans and sensors measuring 
the wind direction, atmospheric pressure, and temperature at height 75 
m. The statistical data in every 10 min were recorded in the measure
ment system. The wind farm includes 19 Bonus 1 MW wind turbines 
(WT1~10, WT12~20) and one Unison 2 MW turbine (WT11) which is 
located on the east site of WT4. The Bonus 1 MW is an active 
stall-regulated turbine with a rotor diameter of 54.2 m and a hub height 
of 45.0 m, and its specification are summarized in Table 2. 

The Doppler LiDAR is used to measure the wind direction and wind 
speed between the height 40 m and 120 m at an interval of 20 m. Since 
the wind speed and wind direction are not affected by wind turbine 
wakes at the height of 120 m, they are taken as the reference wind 
condition for the wind farm flow prediction. The wind rose is shown in 
Fig. 4a, in which wind sector width is set to 5◦, and the west is the 
prevailing wind direction. The wind speed distribution is illustrated in 
Fig. 4b. The turbulence intensity versus wind speed with bin averaged 
values are also shown in Fig. 4c. It is found that the wind turbines at this 
site are operated under a relative high level of turbulence intensity. 

The atmospheric pressure and temperature measured at the height 
75 m of Met-mast-1 are plotted in Fig. 5, and the air density at the hub 
height calculated based on Eq. (11) are shown in Fig. 6. It can be seen 
that the actual air density is larger than the standard value due to the 
low temperature during the winter season in the north of Japan. 

3. Results and discussion 

The characteristics of power distribution of a representative turbine 
in the wind farm is analyzed and the proposed probabilistic power curve 
model is validated in section 3.1. The numerical setup for the CFD 
simulation is then described in section 3.2, and the accuracy of the 
hybrid wind farm flow model is validated by comparing the predicted 
and measured wind field. Finally, the power of the wind farm and its 
uncertainty is predicted and validated in section 3.3. 

3.1. Validation of proposed probabilistic power curve model 

In general, the power curves of stall-regulated wind turbines with 
fixed speeds show larger scatter comparing those of pitch-regulated 
wind turbine with variable speeds as shown in Burton et al. [32]. It is 
because that the power coefficients change with the wind speed and 
turbulence intensity which results in the uncertainty of power output as 
pointed out by Aliferis et al. [33], while the power outputs of the pitch 
regulated wind turbine with variable speeds are controlled by the 
rotational speed and pitch angle decreasing the sensitivity to the tur
bulent inflow. In this study, an active stall-regulated wind turbine with 
fixed speeds in the Tomamae wind farm is selected to build the proba
bilistic power curve model and the rest of the wind turbines are used to 
validate the proposed model. 

Wind turbine operational data usually has unreasonable data due to 
some abnormal situations including blackout, component failures, er
rors from measurement, curtailment, and maintenance, etc. These data 
cannot reflect the actual characteristics of the wind turbine, therefore 
the raw measurement data have to be cleaned out from abnormal 
operation based on a certain filtering criterion. Various filters for outlier 
detections in the WTPC have been applied in the existing research [3]. In 
this study, the data filtering conditions are shown in the following 
Table 3. The data cleaning is processed with the following two steps: 
Firstly, Filters (1)–(3) are practical yet straightforward SCADA 
data-based process, where positive power values, wind speed and rotor 
speed are identified. However, it is noted that the resulting SCADA data 
will not be entirely free from errors due to the irregular wind and 
operation conditions, such as unsteady wind conditions or unexpected 
stops. Thus, Filter (4) is then performed based on the Criterion (4). These 
abnormal situations are modelled separately as shown in WindFarmer 
theory manual (2014). 

The wind speed range is firstly divided into several bins with interval 
of 1 m/s. For each bin, the median value mP and the standard deviation 
for power output is calculated σP. It is noted that the center of each bin is 
represented by the median values of power instead of mean value so that 
the calculation is not biased by a few outliers [34,35], especially for the 
above rated region. In each wind speed bin, the power output that are 

Fig. 6. Time series of 10-minutue averaged air density at wind turbine hub height at the location of Met-mast No.1. The orange line denotes the value of standard 
air density. 

Table 3 
Data cleaning criterion for SCADA data analysis.  

Filter Criterion 

(1) Wind speed (m/ s) U > 0 
(2) Rotor speed ( rpm) Ω > 0 
(3) Power (kW) P ≥ 1 
(4) Power in each wind speed bin (kW) |P − mP | ≤ 3 σP  

Fig. 7. Scatter plots of power versus wind speed with the data cleaning criteria 
for WT1. 
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outside of ±3σP are marked as outliers and are discarded. Fig. 7 shows 
an example of applying the data filtering for WT1, where the normal 
data and abnormal data are plotted by gray points and blue points, 
respectively. The median values in each bin are plotted in red open 
circles. Note that the bin median value at the above rated wind speed 
region is found to be Pr = 970 kW, which is used in the power curve 
modelling. Gray points in Fig. 7 are the cleaned data from WT1 and it is 
clear to see that the power is highly scattered with a wide band. This 
justifies the need to develop a probabilistic power curve model rather 
than a deterministic model. 

The practical distribution of power points within each wind speed 
bin from 3 m/s to 18 m/s for WT1 are analyzed and shown in Fig. 8, 

where all the power data are normalized by the rated power. At the cut- 
in wind speed region, the distribution presents a reverse J-shape. Then, 
it becomes to a positively skewed bell-shape with right tail and the mode 
position increases with the increasing wind speed. When the wind speed 
increases to 9 m/s which is the midpoint between Uin = 3m/s and Ur =

15m/s, the distribution displays a nearly symmetric bell shape. On the 
other hand, the shape of distribution gradually changes to negative 
skewed and left-tailed, which finally develops a J-shape. For each wind 
speed bin, the mean value and standard deviation of power are calcu
lated and the shape parameters (α, β) of beta density function are then 
obtained by Eq. (7) and Eq. (8). The calculated (α, β) are then used to 
formulate the PDF for each bin of wind speed, which are plotted in red 
lines in Fig. 8. In addition, the PDF of normal distribution based on the 
calculated mean value and standard deviation are also plotted with blue 
dashed lines for comparison. The beta density function can favorably 
match the power distribution in any wind speed bin, however the 
normal density function cannot capture the uncertainty of power output 
in low wind speed region, as well as near and above rated wind speed 
region. 

The shape parameter (α, β) of beta density function in each wind 
speed bin for WT1 are shown in Fig. 9, where the wind speed is 
normalized by Ur. It can be seen that, α and β are monotonically 
increasing and decreasing as wind speed increases, respectively, and 
they are approximately equal at the normalized median wind speed 
Ûm = 0.6. Based on the proposed equation for α and β (see Eq. (9) and 
Eq. (10)), the fitted curves for them are obtained and favorably capture 
the values for different wind speed. The fitted constants in the shape 
parameter equations are m = 4.51, n1 = 1.18, and n2 = − 6.85, which 
are applied for other turbines in the Tomamae wind farm to validate the 
accuracy of proposed power curve model. 

The predicted power outputs of WT3 are compared with the 

Fig. 8. Probability density distribution of power outputs within each wind speed bin for WT1.  

Fig. 9. Variation of shape parameters α and β with the normalized wind speed 
for WT1. 
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measurements and are shown in Fig. 10. The mean value and standard 
deviation for each wind speed bin are firstly estimated by using Eq. (5) 
and Eq. (6) and compared with those obtained from the measured data 
as shown in Fig. 10a and b, where the predicted mean value and stan
dard deviation of power output by the proposed probabilistic WTPC 
show good agreement with those from the measurement. However, the 
predicted mean values by the manufacture WTPC show slight 

overestimations in the higher wind speed region and the predicted 
standard deviation depicts significant underestimation. In addition, 
Fig. 11 presents the scatter plot of power outputs of WT3. The red dots 
randomly generated based on the beta density function in Fig. 11b can 
well reproduce the highly scattered data from measurement as shown in 
the black dots, while the normal distribution will generate negative 
values at low wind speed region and values higher than rated power 

Fig. 10. Comparison of measured and predicted power outputs for WT3: (a) mean values, (b) standard deviations. The power outputs are normalized by the rated 
power of wind turbine Pr , and the wind speeds are normalized by the rated wind speed Ur . 

Fig. 11. Comparison of measured and predicted power outputs by (a) normal distribution and (b) beta distribution for WT3. The power outputs are normalized by 
the rated power of wind turbine Pr , and the wind speeds are normalized by the rated wind speed Ur . 

Fig. 12. Weighted mean absolute percentage errors in (a) mean value and (b) standard deviation of power output for each wind turbine.  
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near rated wind speed as shown by the blue dots in Fig. 11a. 
In order to evaluate the errors in the predicted mean values and 

standard deviation of power output, the weighted mean absolute per
centage error (WMAPE) is introduced as follows 

WMAPE=

∑N
i=1fi

⃒
⃒xpred

i − xobs
i

⃒
⃒

∑N
i=1fixobs

i
(35)  

where the xpred
i and xobs

i are the predicted and observed value in a certain 
wind speed bin i, respectively, and fi denotes the occurrence of the hub 
height wind speed in the bin i, and N is the number of bins. The WMAPE 
in mean value and standard deviation of power for each wind turbine are 
summarized in Fig. 12a and Fig. 12b, respectively. Since the anemom
eter of WT5 and WT13 were in failure during the campaign and WT11 is 
a different type of turbine, they are not included in Fig. 12. The proposed 
probabilistic WTPC based on WT1 can significantly reduce the predic
tion errors for all the other turbines. The averaged WMAPE for the mean 
value decreases from 10.9% to 6.5% and that for the standard deviation 
decreases from 100% to 9%, respectively. 

3.2. Prediction of wind farm flow over complex terrain and its validation 

Firstly, the numerical setting for CFD simulation of wind flow over 
complex terrain without turbines are described. The general numerical 
simulation settings including critical mesh size and fluid conditions in 
this study are exactly identical to those in Qian and Ishihara [27]. As 
shown in Fig. 13, a numerical wind tunnel is built by the dimensions of 
18km × 18km × 2 km in streamwise, spanwise and vertical directions 
with a scale of 1:2000. The height of domain is determined by limiting 
the blockage ratio to a specified value of 5%. Considering the average 
elevation in the site is lower than 100 m, 2 km is adopted as the 
calculation domain height. In the inflow generation zone, roughness 
blocks are placed 7 km upstream from the origin, where the neutrally 
stratified atmospheric boundary layer in the ocean side was simulated 
with the mean velocity profile following the power law of α = 0.1. For 
the land side, the boundary layer would be automatically developed 
through the surrounding terrain and vegetations within the considered 
region. The location of WT12 is set as the origin of the computational 
domain. 

The topography model with a scale of 1:2000 and a radius of 4 km is 
generated based on the digital elevation model (DEM), as shown in 
Fig. 13. For the sake of reducing calculation cost as well as keep pre
diction accuracy, a hybrid grid system is designed as presented in Qian 
and Ishihara [27]. The DEM database used in this research is provided 
by the Geospatial Information Authority of Japan [36] in raster format, 

Fig. 13. Configuration of computational domain with terrain topography.  

Fig. 14. Digital map of buildings and forests in the wind farm. The values of 
different legend represent the height of canopies. 

Fig. 15. Horizontal contour of wind speed at the hub height of wind turbine extracted from the simulated wind farm flow field: (a) mean wind speed and (b) 
turbulence intensity. The distances are normalized by the rotor diameter of wind turbine. 
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which describes the topography in Japan with an available minimum 
resolution of 10 m × 10 m. The outer ring with width of 1 km is used to 
smooth the surrounding terrain. Since the buildings and forest are 

dominant surface roughness conditions and strongly affect the flow 
fields, the canopy model described by Ishihara et al. [37] are utilized to 
simulate the ground roughness effects. The distribution of the vegetation 

Fig. 16. Wind conditions at Met-mast No. 3: (a) Layout of Met-mast No.3 and its surrounding wind turbines. Comparison between predicted and measured (b) mean 
wind speed and (c) turbulence intensity at the location of Met-mast No.3 in the several typical wind directions. 
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and buildings are obtained from the database provided by the Ministry 
of Land, Infrastructure, Transport and Tourism [38] and then locally 
modified based on the Google Earth. The height of buildings and 
different type of tress are identified via Google street view with photo
graphical measurement [37]. The generated digital map of buildings 
and tress are shown in Fig. 14. 

A stress-free condition (∂u/∂n = 0, ∂v/∂n = 0, w = 0) is used at the 
top of the domain and a symmetry condition (∂u/∂n = 0, ∂w/ ∂n = 0, 
v = 0) at the two sides. Uniform flow with a speed of 10 m/s is set at the 
inlet (p = 0, u = 10 m/s, v = 0, w = 0). At the end of the numerical wind 
tunnel, the outflow condition is applied (∂p/∂n = 0, ∂u/ ∂n = 0, ∂v/ ∂ 
n = 0, ∂w/∂n = 0). The wall-stress boundary condition is imposed at the 
ground surface, where the wall shear stresses are calculated following 
the log law of wall with roughness. The roughness length values for 
different areas are determined based on the land-use database provided 
by MLIT [38], while for those areas which are covered by canopy model, 
roughness length is modified to z0 = 0.01 m as shown in Ishihara et al. 

[39]. 
Once the normalized wind flow field at different wind direction are 

obtained by the CFD simulation, the flow field is then modified by using 
the wind farm model as presented in section 2.2, where the wind con
dition measured at 120 m by the LiDAR is used as the input. Fig. 15 
shows an example of predicted wind speed and turbulence intensity at 
the hub height of the wind farm at a certain time step with incoming 
wind direction of W and wind speed of 10 m/s. There is a clear speed up 
at the east coastline where is characterized by an escarpment. The wind 
speed deficit and added turbulence intensity induced by the wind tur
bines are captured as well, which are calculated by the Ishihara-Qian 
wake model. One wind turbine, WT-Jpower, located at the east site of 
WT1 in the nearby wind farm is also included in the simulation. 

To validate the hybrid wind farm flow model, the predicted wind 
conditions at several target sites are compared with those obtained from 
the measurement. Firstly, the predicted and measured mean wind speed 
and turbulence intensity at the site of Met-mast No. 3 are presented in 

Fig. 17. Wind condition at WT8 and WT18: (a) and (b) Local layout of the target turbine and its surrounding turbines. Pink sectors denote the wind directions in 
which the target turbine is affected by wakes; Distribution of mean wind speed at the hub height in different wind directions for (c) WT8 and (d) WT18. 
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Fig. 16. Eight wind sectors affected by wind turbine wakes are filled with 
pink color as shown in Fig. 16a, and the vertical profiles of mean wind 
speed and turbulence intensity are illustrated in Fig. 16b and c, 
respectively. The open circles denote the measurement data, and the 
predicted results with and without wake effects are plotted by red and 
black solid lines, respectively. The results predicted by the modified 
PARK model in WindFarmer [1] are also plotted by blue dashed lines for 
comparison. The wind speed and turbulence intensity predicted by the 
present wind farm flow model are in good agreement with the mea
surement. For wind sectors where there is only one wind turbines in the 
upstream, the modified PARK model can provide good prediction as 
well, however, it underestimates the velocity deficit when the Met Mast 
3 is affected by a couple of turbines, such as sector of NNE in Fig. 16a. 
The modified PARK model does not consider the turbine induced tur
bulence, thus it underestimates the turbulence intensity for all directions 
as shown in Fig. 16b. 

Secondly, the mean wind speeds at two selected wind turbines are 
also shown in Fig. 17. Similarly, the local layout of target turbine and its 
surrounding turbines are shown in Figs. 17a and b for WT8 and WT18, 
respectively, where the wind sectors filled with pink color display the 
wind sectors that are affected by wind turbine wakes. From Fig. 17c and 
d, it can be seen that, in the wind direction without turbines in the 
upstream, the wind speeds predicted by CFD simulation agree well with 
those measured by the nacelle anemometer. In addition, for those wind 
sectors affected by the upstream turbines, the wind speed distribution is 
well reproduced by considering the wake effects through the Ishihara- 
Qian wake model. However, the modified PARK model overestimates 
the wind speed in the direction of N and NNE for WT8, and the direction 
of N, NNE, NNW for WT18. 

3.3. Wind farm power prediction and uncertainty estimation 

To predict the wind farm power production, the array efficiency 
which is dependent on the multiple wind turbine wake effects needs to 
be accounted for. Two cases of one row turbines at a certain wind di
rection are provided in Fig. 18 and Fig. 19. In the first case, WT15, WT12 
and WT16 are selected, where the distances between them are 4.7 D and 
5.0 D (see Fig. 18a). The observed and predicted time series of wind 
speed and power at the wind direction of 284◦ with a sector width of 5◦

are collected and the time-averaged values for each turbine are plotted 
in Fig. 18c and d. The second case is presented for WT6, WT13 and 

WT16, where the distances between them are 4.6 D and 5.9 D, respec
tively (see Fig. 19a). The observed and predicted time series of wind 
speed and power at the wind direction of 237◦ with a sector width of 5◦

are collected and the time-averaged values for each turbine are plotted 
in Fig. 19c and d. Compared with upstream turbines, the wind speed and 
power of downstream turbines decease due to the wake effects as shown 
in Figs. 18b and 19b. The predicted wind speed and power by the present 
wind farm flow model agree well with those obtained from SCADA data. 
However, the modified PARK model generally overestimates the wind 
speed and power especially for the third downstream turbines as shown 
in Figs. 18 and 19. 

Finally, the power production of the whole wind farm is analyzed 
and the mean value and standard deviation of power output at different 
wind speed bins are displayed in Fig. 20. Note that the freestream wind 
speed at the hub height over the flat terrain without wind turbine wake 
effects predicted by the wind farm flow model is taken as the reference 
wind speed for the plot in Fig. 20. The open circles show the values 
obtained from SCADA data. Blue lines represent the predicted theoret
ical power production where the wake effects are ignored, while the 
predicted power production with wake effects are plotted by green lines, 
where the manufacture power curve is utilized. Red lines denote those 
predicted by using the proposed probabilistic power curve model, where 
the time series of power output is calculated for each wind turbine using 
Eq. (11). It can be seen from Fig. 20a that, with considering wake effects, 
the mean values of power at each wind speed bin get closer to the 
measurement but still underestimate those near the cut-in wind speed 
and overestimate those near the rated wind speed region. These dis
crepancies are improved by applying the proposed probabilistic power 
curve model to the power prediction. 

To estimate the uncertainty of the power output at different wind 
speed, a fully dependent relationship is assumed for all turbines in the 
Tomamae wind farm since the area of wind farm is limited. As a result, 
the standard deviation of the wind farm power output can be simply 
estimated as follows: 

σP,WF =
∑N

i=1
σi

P,WT (36)  

where N is the number of turbines, and σi
P,WT is the standard deviation of 

individual turbine i calculated by Eq. (12). As shown in Fig. 20b, the 
predicted standard deviation of wind farm power production at different 
wind speed are well reproduced by using the proposed probabilistic 

Fig. 18. Validation case of one row turbines: (a) layout of WT15, WT12 and WT16. (b) contour of mean wind speed at hub height. comparison of predicted and 
measured (c) wind speed and (d) power output of each turbine. 
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power curve model, while the conventional manufacture power curve 
cannot provide the uncertainty of wind farm power production. 

The weighted mean absolute percentage error in mean value and 
standard deviation of wind farm power are also calculated and plotted in 
Fig. 20c and d, respectively. As expected, the WMAPE in mean value is 
reduced from 18.1% to 7.2% with consideration of wake effects. Note 
that the prediction accuracy in mean value using the proposed proba
bilistic WTPC model does not provide improvement compared with the 
manufacture WTPC since the wind speed mainly occurs in the medium 

wind speed region (see Fig. 4) where the two WTPCs show almost same 
performance as shown in Fig. 20a. For the standard deviation, the pro
posed model displays much higher accuracy compared with the manu
facture power curve model since the deterministic WTPC cannot predict 
the standard deviation in the wind farm and the WMAPE in standard 
deviation is reduced from 100% to 15.6% by using the proposed prob
abilistic WTPC. 

Fig. 19. Validation case of one row turbines: (a) layout of WT6, WT13 and WT16. (b) contour of mean wind speed at the hub height. comparison of predicted and 
measured (c) wind speed and (d) power output of each turbine. 

Fig. 20. Distribution of (a) mean value and (b) standard deviation of wind farm power outputs under the different normalized wind speed, as well as prediction 
errors in (c) mean value and (d) standard deviation. The power outputs are normalized by the rated power of wind farm Pr,WF , and the values of wind speed are 
normalized by the rated wind speed Ur . 
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4. Conclusion 

In this study, a novel probabilistic power curve model is proposed 
and a hybrid wind farm model is presented to predict the power pro
duction for the wind farm over complex terrain. The predicted mean 
value and standard deviation of power production are validated by a 
measurement campaign conducted in the Tomamae wind farm located 
in the north of Japan. Following conclusions are obtained:  

(1) The power production at a certain wind speed bin is modelled by 
the beta distribution for an active stall-controlled wind turbine 
based on the SCADA data analysis. The predicted mean value and 
standard deviation of power by the proposed probabilistic power 
curve model based on one wind turbine show favorable agree
ment with the measurements obtained from other wind turbines 
in the wind farm, while the normal distribution cannot accurately 
estimate the probability distribution of power output of wind 
turbine when the wind speed is lower than 6 m/s and higher than 
13 m/s.  

(2) A hybrid wind farm model with low computational cost for wind 
flow prediction over complex terrain is validated by the measured 
wind speed obtained from Met-masts and wind turbine SCADA. 
The predicted wind speed and turbulence intensity by the CFD 
simulation combined with the Ishihara-Qian wake model show 
good agreement with the measurements, while the conventional 
modified PARK model underestimates the turbine induced tur
bulence and overestimates the wind speed and power production 
as well.  

(3) The proposed probabilistic power curve model combined with 
the hybrid farm flow model is validated by the measurements. 
The predicted mean value and standard deviation of power pro
duction in the wind farm show favorable agreement with the 
measurements. The weighted mean absolute percentage error in 
mean power production in the wind farm is reduced from 18.1% 
to 7.2% with consideration of wake effects and that in standard 
deviation is reduced from 100% to 15.6% by using the proposed 
probabilistic power curve model. 
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