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Abstract
Atmospheric three-dimensional (3D) mean and turbulent flow over an isolated 3D hill of
cosine-squared cross-section and a smooth surface are studied by large-eddy simulations
validated against data from a wind-tunnel experiment. Many features of the 3D flow across
the hill are identified through analyzing mean and turbulent quantities on three surfaces,
including a vertical cross-section across the hilltop, and surfaces of vertical distances of
0.25h and 1.25h from the ground, where h is the hill height. Besides flow blocking and
separation with a recirculation region immediately upstream and downstream of the hill,
respectively, a spiral-shaped structure wandering in both the lateral and vertical directions
develops, accompanied by the wake and shear regions where sweep and ejection events play
different roles in momentum transfer. The secondary rotations in the wake flow as well as
the inner and outer rotations associated with the core vortex are also identified, together with
other features.
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1 Introduction

The mean and turbulent flow fields over complex terrain are of great interest for many
applications, such as for identifying potential locations of wind turbines (Politis et al. 2012;
Bédard et al. 2013; Castro et al. 2014), monitoring pollution dispersion or CO2 concentration
within hilly terrain (Perdikaris 2001; Carvalho et al. 2006; Kutter et al. 2017), estimating
the wind loading on buildings or bridges (Davenport and King 1990), identifying regions at
high risk of tree damage in windy conditions (Matusick et al. 2014), and predicting forest-
fire propagation (Lopes et al. 2002). In particular, identifying wind-turbine locations and
designing wind-resistant structures require the accurate prediction of the wind fields, since
the former is associated with the wind power that is proportional to the cube of the wind
speed, while the latter involves the square of the wind speed (e.g., Şen 2003; Baker 2010).
Therefore, observing and accurately simulating the mean and turbulent flow in the lower
atmosphere over complex terrain remains an important subject of study (e.g., Ma and Liu
2017; Hancock et al. 2018; DeLeon et al. 2018).

In the experiments described by Ishihara and Hibi (1998) and Ishihara et al. (1999), two
types of upwind atmospheric-boundary-layer (ABL) flows were modelled, and the flow over
the hills was examined. The scaled roughness lengths of the modelled upwind ABL flow are
0.3 m and 0.01 m, corresponding to suburban or wooded countryside and flat grassy plains,
respectively. While these experimental studies provide a fundamental understanding of the
flow over a hill, full three-dimensional (3D) views of the mean and turbulent flow fields over
a 3D hill are still lacking, given that most studies focus primarily on illustrating the flow
features in a vertical cross-section through the hilltop. In addition, studies rarely take into
account the full suite of important parameters, including the spatial correlations of velocities
for the estimation of the integral length scale and identification of the coherent turbulent
structures, as well as the skewness and kurtosis for the estimation of the peak velocities.

The case with a smooth surface of 0.01-m roughness length in the experiment of Ishihara
et al. (1999) is modelled here in consideration of the northern part of China where many hills
are smooth and lacking tree cover, and are thus rich in wind energy. A detailed examination
of the flow characteristics is, therefore, meaningful for the design of wind turbines in this
region. However, it should be pointed out that ABL flow over topography can be affected
significantly by the surface roughness. For example, the flow over a rougher surface may be
more likely to separate (e.g. Gong et al. 1996), and details of the separation line will depend
on the approaching flow profile. With an aerodynamically smooth surface, the Reynolds
number may also affect separation (Zilker et al. 1977).

The mean and turbulent flow fields and coherent turbulent structures over an isolated
3D hill are simulated and analyzed here with large-eddy simulations (LES) after validation
against wind-tunnel data. To construct the turbulent flow fields, the following variables are
selected to describe the turbulent statistics: (a) mean and fluctuations of pressure and velocity,
(b) turbulence kinetic energy (TKE), (c) the vertical momentum flux uw, (d) the vertical
momentum flux in the second quadrant uwII caused by ejection motion, (e) the vertical
momentum flux in the fourth quadrant uwIV caused by sweepingmotion, (f) the ratio between
uwIV and uwII, Quw �uwIV/uwII, enabling quantification of the overall relative contribution
of the ejection and sweeping eddy motions to the mean momentum flux, (g) correlations
between the streamwise and vertical velocities Ruw representing the efficiency of turbulence
for momentum transport, (h) the skewness Skui providing information about the symmetry
of the probability distribution of the velocity fluctuations ui around the mean value, (i) the
kurtosis Kuui providing information about the peakedness of the probability distribution of
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velocity fluctuations ui, (j) the two-point spatial correlations of the velocity components
Rui ui providing information about the turbulence length scale, and (k) the Q-criterion. This
criterion enables quantification of the relative amplitude of the rotation rates and the strain
rate of the flow for identification of vortex cores, which are examined on three surfaces,
including the vertical cross-section across the hilltop, the surfaces at vertical distances of
0.25h and 1.25h from the ground, h being the hill height. A 3D view of the flow fields using
the Q-criterion is also provided, the main objective being to obtain a full view of the flow
fields and coherent structures over an isolated 3D hill.

2 Computational Details

2.1 Governing Equations

In the LES strategy, large eddies are explicitly resolved, while the small eddies are
parametrized by subgrid-scale (SGS) models. The governing equations are usually obtained
by filtering the time-dependent Navier–Stokes equations in Cartesian coordinates (x, y, z),

∂ρũi
∂xi

� 0, (1)

∂ρũi
∂t

+
∂ρũi ũ j

∂x j
� ∂

∂x j

(
μ

∂ ũi
∂x j

)
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∂xi
− ∂τi j

∂x j
, (2)

where ũi and p̃ are the filtered velocity and pressure, respectively, μ is the viscosity, ρ is the
density, and τi j is the SGS stress. To close the equations for the filtered velocities, a model
for the anisotropic residual stress tensor τi j is needed, which is modelled as

τi j � −2μt S̃i j +
1

3
τkkδi j , (3)

S̃i j � 1
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(
∂ ũi
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+
∂ ũ j

∂xi

)
, (4)

where μt denotes the SGS turbulent viscosity, S̃i j the rate-of-strain tensor for the resolved
scale, and δi j is the Kronecker delta. The Smagorinsky–Lilly model is used to parametrize
the SGS turbulent viscosity (Ferziger and Peric 2002) as

μt � ρL2
s

∣∣∣S̃
∣∣∣ � ρL2

s

√
2S̃i j S̃i j , (5)

Ls � min
(
κd,CsΛ

1/3), (6)

where Ls denotes the SGS mixing length, κ is the von Kármán constant (=0.42), d is the
distance to the closest wall, and Λ is the volume of a computational cell. Here, Cs is the
Smagorinsky constant, which is set to a value of 0.1 following Iizuka and Kondo (2006).

When the cells are in the viscous sublayer, the shear stresses are obtained from the viscous
stress–strain relation

ũ

u∗
� ρu∗δn

μ
, (7)

where u∗ is the friction velocity, and δn is the distance between the centre of the cell and
the wall. If the mesh cannot resolve the viscous sublayer, it is assumed that the centroids of
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the cells fall within the logarithmic region of the boundary layer, and the law-of-the-wall is
employed as

ũ

u∗
� 1

κ
lnΘ

(
ρu∗z

μ

)
, (8)

where the constant Θ �9.793.

2.2 Method for Simulating Roughness Elements

The canopy model has been widely applied to simulate roughness elements by adding an
appropriate source term fũ,i to the momentum equation,

∂ρũi
∂t

+
∂ρũi ũ j

∂x j
� ∂

∂x j

(
μ

∂ ũi
∂x j

)
− ∂ p̃

∂xi
− ∂τi j

∂x j
+ fũ,i , (9)

fũ,i � −1

2
pCf

γ0

l0
ũmagũi , (10)

where Cf � CD,ũi /
(
1 − γ 2

0

)
, with the drag coefficient CD,ũi �0.4 following Kaimal and

Finnigan (1994). Here,γ0 � Λ0/Λgrid is the volume-occupancy rate, Λ 0 is the volume
occupied by the obstacle,Λgrid is the volume of the grid containing the obstacle, l0 � Λ0/A0

is the representative length, and A0 is the frontal area of the single roughness element. For the
gridswithin the solid-roughness elements,Λ0 � Λgrid, and, therefore, the volume-occupancy
rate γ 0 �1 for these grids, and hence Cf � ∞, so that velocities in the same volumes of
the solid-roughness elements are close to zero to reproduce the solid drag effects on the
fluid. In the numerical simulations using the canopy model introduced above, the volumes
occupied by the roughness elements can be defined using certain functions without explicitly
building the geometries in the mesh-generation procedure. For the grid cells located in the
volumes determined by the functions, the drag-force terms fũ,i given in Eq. 8 are added to the
momentum equations to represent the effects of the solid elements, which can be carried out
by user-defined functions in the ANSYS Fluent version 14.0 software (2014). For different
arrangements of the roughness elements, the geometry of the computational domain and
the mesh system do not need to be rebuilt; rather, we must simply modify the functions
determining the roughness elements so as to avoid the repeated tasks.

2.3 Computational Domain

To evaluate the performance of our simulations, a neutrally-stratified ABL experiment in a
wind tunnel (Ishihara et al. 1999) was simulated (Fig. 1). The return wind tunnel had a test
Section 1.1-m wide, 0.9-m high, and 7-m long, containing three rows of cubic roughness
elements of height 60 mm, followed by 20 mm and 10 mm covering 1.2 m of the test-section
floor (0.4 m each), corresponding to areal densities of 25%, 2.8%, and 0.7%, respectively
(Fig. 1b). The parameters in our numerical model are the same as for the wind-tunnel exper-
iment except the width of the wind tunnel and the upstream necking zone (Fig. 1a). For both
of the experiment and the model, the origin is 3.4-m downstream from the roughness blocks,
corresponding to the centre of the 3D hill. Mason and Thomson (1987) recommend a width
of approximately twice the boundary-layer depth for reproducing the largest eddies in the
ABL. Taking into account the convenience in generating the roughness elements, we set a
value of 1.8 times the boundary-layer thickness (i.e., 0.66 m). An upstream buffer zone (i.e.,
2-m long) was appended to minimize any perturbations from the effect of the inlet condi-
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Roughness blocks

Original point (0, 0, 0)

y, vz′=0.25h

z′=1.25h

a

b

c

Fig. 1 Configurations of the computational domain:a geometry of the numericalwind tunnel,b the arrangement
of the roughness elements, c coordinates and notations used here. The dashed lines in Fig. 1c denote the surfaces
with vertical distances of 0.25h and 1.25h from the surface

tions on the turbulence-generation region. The outlet of the numerical model was set 2.4 m
downstream from the origin, which is 60 times as large as the height of the simulated 3D
hill, to avoid any influence from the outlet on the region of interest. The 3D hill is defined
by the functions zs(x, y) � h cos2 π (x2 + y2)1/2/2L for (x2 + y2)1/2 < L , and zs(x, y) � 0
for (x2 + y2)1/2 > L , where x, y, and z are the streamwise, spanwise, and vertical directions,
respectively, and h �40 mm and L �100 mm for a maximum slope of ≈32°. Figure 1c
shows the side view of the 3D hill and the coordinate system. A second vertical coordinate
z′ � z − zs(x, y) is also used to denote the height above the local surface.
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2.4 Grid System

The grid-nesting procedure illustrated in Fig. 2a, where the dark grey area shows the fine-
grid region, minimizes the impact of the lateral boundaries and simulates the flow over an
isolated hill within an acceptable computational time. The fine-grid domain covers the range
(Lx , Ly, Lz)� (30h, 5h, 5h) in the x, y, and z directions, respectively. Both the upstream
and downstream fine-grid regions are of length 15h, which is large enough to absorb the
perturbations from the change of the grid at the beginning and end of the fine-grid domain
according to the flow visualization presented below. Within the fine grid, the horizontal grid
shape is square, with horizontal resolutions of 5.65 mm, 4 mm, 2.8 mm, and 2 mm having
been examined. Since the horizontal resolutions of 2.8 mm and 2 mm lead to almost the
same results, the 2-mm resolution is used for the fine grid. The light grey area in Fig. 2a
between the coarse-grid region in white and fine-grid region in dark grey denotes the buffer
zone, which increases from 2 mm at the boundary of the fine-grid region to 10 mm at the
inner boundary of the coarse-grid region. The horizontal grid shape within the buffer zone
is quadrilateral, with a growth factor of 1.2. In the rough-grid region, the horizontal grid
shape is square, and a uniform grid size of 10 mm is applied. The choice of the size and
resolution of our nested domains results from a compromise between constraints related to
the available computational time and the sufficient domain size to represent the largest eddies
and fine enough to represent the smallest eddies of interest. In Fig. 2a, the white dashed circle
indicates the area covered by the 3D hill. In the vertical direction, a regular terrain-following
mesh is adopted, which in the first-layer grid is 0.005h, and the maximum growth ratio is
1.15. The value of z+ � zu∗/ν at the surface of the target region varies between 0.5 and 1,
while the total grid number is 2.4 × 107. Figure 2b shows the vertical cross-section through
the origin of the 3D hill.

2.5 Boundary Conditions

A stress-free boundary condition is used at the top of the domain and the spanwise sides,
a uniform flow with a constant speed of 5.4 m s−1 in time is set at the inlet, and the outlet
boundary has zero normal gradients of pressure and velocities. The non-slip condition is
applied at the bottom surface with the wall functions; settings for all boundary conditions
are listed in Table 1.

2.6 Solution Scheme and Procedure

The finite-volume method is used for the simulations in which all the variables are dis-
tributed in a non-staggered, cell-centred mesh system. Similar to the finite-difference or
finite-element methods, variables are evaluated discretely on ameshed geometry in the finite-
volumemethod. The finite volume refers to the small volume surrounding each node point on
a mesh, enabling the conversion of divergence terms within the volume to surface integrals
using the divergence theorem, and these terms are then evaluated as fluxes at the surfaces of
each finite volume. Because the flux entering a given volume is identical to that leaving the
adjacent volume, the finite-volume method is conservative, which is its greatest advantage.
The second-order central-difference scheme is used for the convective and viscous terms,
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Fig. 2 Grid distributions of the model: a schematic showing the locations of the coase grid, buffer zone, and
fine grid of the nested domain. The white, dashed circle denotes the 3D hill. The x- and y- axes are normalized
by the height h. b Distributions of the mesh on the vertical cross-section at the centre of the 3D hill. The x-
and z- axes are normalized by the height h. c Relative errors of the mean streamwise velocity component εU ,r
and r.m.s. of the streamwise velocity component εu,r versus grid number

and the second-order implicit scheme is employed for the unsteady term (Ferziger and Peric
2002), (

dφ

dt

)
n

� 3φn−4φn−1 + φn−2

2�tn
, �tn � t−tn−1 � tn−1−tn−2, (11)

where n and n −1 denote the new and old times, respectively, and φ is an arbitrary variable.
The timestep �t �0.0001 s, which in the convective time scale �t* ��tUh/h �0.0109,
where Uh �4.37 m s−1 is the mean wind speed at the point (x �0, y �0, z �h) when the
ground is flat, giving a Reynolds number at the hill height Re �Uhh/υ �1.16×104. The
method consists of linearizing the non-linear equations and implementation into a matrix
solution, and the predicted conjugate-gradient method is applied to solve the linearized equa-
tions along with the algebraic multi-grid approach. The Courant–Friedrichs–Lewy number
(Courant et al. 1928) expressed as C � �tΣ ũi/�xi , where ũi is the velocity, and �xi is
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Table 1 Settings of the boundary conditions

Locations Boundary type Expression

Outlet of the domain Outflow ∂ ũi /∂n � 0, ∂ p̃/∂n �0

Lateral sides of the domain Symmetry ∂ p̃/∂n �0, ∂ ũ/∂n � 0,
∂w̃/∂n � 0, ṽ � 0

Top of the domain Symmetry ∂ p̃/∂n �0, ∂ ũ/∂n � 0,
∂ṽ/∂n � 0, w̃ � 0

Inlet of the domain Velocity inlet ṽ �5.4 m s−1, ∂ ũ/∂n � 0,
∂w̃/∂n � 0, ∂p/∂n � 0

Ground Non-slip wall ∂ p̃/∂n � 0, ũi � 0

Table 2 Numerical schemes

Time-discretization
scheme

Second-order implicit
scheme

Cs number 0.1

Space-discretization
scheme

Finite-volume method
second-order
central-difference
scheme

SGS model Smagorinsky–Lilly

Non-dimensional time
step size: �Uhh

0.0109 CFL number:
�t�ui/�xi

<2

Reynolds number
Re �Uhh/υ

1.16×104 Velocity–pressure
decoupling method

SIMPLE algorithm

Turbulence model LES Software ANSYS Fluent 14.0

Time for statistics 20 s Solution of the
linearized equations

Preconditioned
conjugate gradient+
algebraic multigrid

the grid size, is limited to Cmax �2 in the whole computational domain. The semi-implicit
pressure-linked-equations algorithm (also known as the SIMPLE algorithm), which was
introduced by Ferziger and Peric (2002), is used to solve the discretized equations. Relax-
ation factors, which are employed to promote the stability of the process, take values of 0.3
and 0.7 for the pressure and momentum equations, respectively. The commercial software
ANSYS Fluent 14.0 (2014) is used for the calculations.

As the initial transient effects are found to disappear after 10 s, data sampling begins
at 10 s and lasts for 20 s. A stationary condition for time sampling can be achieved by
evaluating the relative errors in the U velocity component at the point (x �L, y �0, z �h),
which becomes less than 1% when the data from 10–30 s are sampled. Consequently, the
filtered velocity components in the simulations can be decomposed into ũi � Ui + u

′
i , where

Ui (U , V ,W ) denote the time-averaged velocity components in the xi (x, y, z) directions,
and u

′
i (u

′, v′, w′) are the corresponding deviations from the time-averaged velocity. The

root-mean square (r.m.s.) of u
′
i is denoted as ui as shorthand for the commonly-used notation

σui . The simulations were performed in parallel (four PCs, Intel core i9-7980XE processors,
18 cores, 64 GB memory), costing 1308h for a 30-s simulation. Table 2 summarizes the
numerical schemes adopted here.
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Table 3 Case settings and computational resources

Cases Horizontal grid
size

Grid number Computational
time

CPU Memory

(mm) (N) (h)

1 5.65 2×106 152 Four PCs (Intel
i9-7980XE, 18
cores) in parallel

64 GB

2 4 4×106 396

3 2.8 1.2×107 689

4 2 2.4×107 1308

2.7 Grid Independency andValidations

Four grid systems (cases 1–4) with increasing horizontal resolution from 5.65 to 2 mm (see
Table 3) are deployed to test the grid convergence, with the coarse grid-number increment
twice that of the finer mesh. Except for the grid density, the other settings, such as the solution
schemes, boundary conditions, and initial values, are all set the same. The mean streamwise
velocity component U and r.m.s. of u′ along the line (x �L, y �0, z � [0, 4h]) are then
compared for different mesh densities.

To clearly show the grid independency, the relative errors as a function of the grid number
are also analyzed. First, the errors (εU for U and εu for u) are defined as the integrals of the
absolute difference between the simulations and the experimental data,

εU �
4h∫

0.0h

|Ue(z)−U (z)|dz (12a)

εu �
∫ 4h

0.0h
|ue(z) − u(z)|dz, (12b)

where the subscript e indicates the experimental data, and are then normalized by the inte-
grated experimental data to determine the relative errors defined by

εU ,r � εU∫ 10r
0.0r Ue(z)dz

(13a)

εu,r� εu∫ 10r
0.0r ue(z)dz

. (13b)

Figure 2c shows that, as the grid number increases, the relative errors monotonically
decrease, but are almost a constant 5.2% for the cases 3 and 4, which is sufficiently accurate
for applications. Therefore, we conclude that a grid with a total of 24 million nodes reaches
grid independency. For this grid system, the maximum SGS viscosity is about 0.7 × 10−5,
which is about half of the viscosity of the air. Both the values ofU andW as well as the r.m.s.
of u

′
i show satisfactory agreement with experiments, as illustrated in Fig. 3.
Consistent with Gong and Ibbetson (1989), the modelled results also indicate that the

mean and turbulent flow over a 3D hill are broadly similar with those over a two-dimensional
ridge, but the perturbation amplitudes for the 3D hill are largely reduced compared with those
for the two-dimensional ridge. In another experimental study, Ishihara et al. (2001) compared
the flow fields over a two-dimensional ridge with those over a 3D hill, identifying opened
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Fig. 3 Profiles of the mean and fluctuating velocity components on the vertical cross-section at y �0: mean of
the a streamwise, and bvertical velocity components, and r.m.s. of the c streamwise c,d spanwise, and e vertical
velocity components. The black and blue dash–dot lines are the wake depth and the shear layer, respectively.
The x- and z-axes are normalized by the height h. The red points with z′ �1.25h denote the reference points
for the calculations of the space correlations in Sect. 3. The velocities Ui and ui are normalized by the wind
speed U4h

123



Large-Eddy Simulations of the Flow Over an Isolated…

streamlines in the wake of the 3D hill, but closed ones in the wake of the two-dimensional
ridge. Whereas the statistics of the flow in the wake of a two-dimensional ridge are two
dimensional, 3D statistics are found in the wake of 3D hill, and hence are more complex.
Clarifying the 3D characteristics of the flow in the wake is, therefore, one of the motivations
of our study.

3 Results

In the following three sections, the simulated results across the vertical cross-section at the
hilltop (i.e., y �0), the surface 0.25h above the ground (i.e., z′ �0.25h), and the surface
1.25h above the ground (i.e., z′ �1.25h), are analyzed to examine features of the 3D flow.

3.1 Upwind Flow Properties

That the mean and turbulence profiles of the upwind flow influence the flow separation and
patterns has been pointed out by Cao and Tamura (2006), and Liu et al. (2016) suggest it is
meaningful to first examinewhether the upwindABLhas been reproducedwell, where Fig. 4a
compares the simulated upwind mean velocity profiles with the experiments in Ishihara et al.
(1999). The vertical coordinate is normalized by the height h and the mean velocities are
normalized by U4h �5.2 m s−1, which is the mean wind speed at the height of 4h when
the terrain is flat. Figure 4b shows that the generated upwind turbulence statistics are in
satisfactory agreement with the experimental data. However, the maximum value of u, which
occurs close to the bottom of the wind tunnel, is considerably larger in the simulation than in
the experiments, which is consistent with previous simulations (e.g., Iizuka and Kondo 2004;
Tamura et al. 2007a, b), and results from the difference of the conditions on the bottom in
experiments and simulations. While the bottom of the numerical wind tunnel is absolutely
smooth, the surface of the actual wind tunnel is not completely smooth, which disturbs the
flow near the surface. However, the spanwise and vertical components of turbulence in the
simulation agree well with the experiments. The vertical profiles of mean velocities, as well
as three components of fluctuations at the locations of x �−L, y�0 and x �L, y�0 are also
extracted and compared with those at x �0, y �0, illustrating good agreement (not shown),
and implying a fully-developed and stable boundary layer.

3.2 Centreline Flow Characteristics

Figure 5 shows the normalized parameters P, Ui, p, ui, and TKE through the vertical cross-
section at y �0. The white and yellow dash–dot lines represent the upper limit of the wake
region and the connection of the u peaks, respectively. ThemaximumSGS variance is located
just behind the summit, which represents only 4%of the resolved variance. FollowingKaimal
and Finnigan (1994), thewake depth is defined as the height at which the value ofU is equal to
the value upstream of the hill at the same height. Here, the wake depth hw, which is calculated
as |Udown(hw)−Uup(hw)|/Uup(hw)<0.01, with Udown and Uup the values of U downstream
and upstream of the hill, respectively, increases quickly from x �0 to x �5h, followed by a
gentle increase. Additionally, the connection of the u peaks indicates the strongest turbulence
region or the central part of the shear layer, whose height slightly decreases from the domain
top to x �2.5h, and then increases at a rate larger than that of the wake depth. The region
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Fig. 4 Profiles of the amean streamwise velocity component, and b turbulence fluctuating velocity components
of the upwind flow according to experiments (markers) and simulations (lines)

enclosed by the white and yellow dash–dot lines roughly implies the shear-layer region
narrowing on its way downstream of the hill.

Approaching the hilltop from x �−5h, the value of U decreases on the upwind side of
the hill due to the obstruction of the hill (Fig. 5b), which is accompanied by an increase in the
value ofP (Fig. 5a) and a positive value ofW (Fig. 5c). In fact, the flow reacts as if the hill and
its separation region are two single obstacles. In order to identify the separation region, the
locations of zero streamwise velocity are delimited by the thick, black dotted lines in Fig. 5
from x �0.9h to x �2.5h. These results are almost the same as the experimental data reported
in Ishihara et al. (1999). In this recirculation region, the global minimum pressure Pmin �−
0.4 occurs at x �h, z′ �0.3h, and, on the top of this region, themaximum pressure fluctuation
is found associated with the streamwise velocity component and the large shear stress there
(Fig. 5d, e). The v component shows two peaks in the vertical direction at x �2.5h (Fig. 5f),
with the peak closer to the ground having much larger fluctuations than the peak above. The
elevated v peak occurs at the same location as that of the u peak, indicating that, apart from
the separation of the flow at the hilltop, there should be another factor contributing to the
magnitude of the v component. Just downstream of the recirculation, the value of w reaches
its maximum because of the unsteady flapping of the flow observed in vorticity animations
at y �0 (Fig. 5g). It is interesting that there is a reduction in the magnitude of w and an
increase in the value of u over the hilltop consistent with the rapid-distortion theory of Hunt
and Carruthers (1990). The eddies of the upwind flow are stretched by the mean flow at the
summit of the hill, resulting in their elongation in the streamwise direction, but flattening in
the vertical direction, as shown in Fig. 16 (below).

Comparing the values of u, v andw shows that the u component contributes primarily to the
TKE (Fig. 6a), and, therefore, both the k and u peaks have the same location. Also shown in
Fig. 6 is the total vertical momentum flux uw � 〈

u′w′〉, where 〈 〉 indicates a time average, the
vertical momentum flux in the second quadrant uwII (Fig. 6c) caused by ejections, the vertical
momentum flux in the fourth quadrant uwIV (Fig. 6d) caused by sweeping motions, the ratio
between uwIV and uwII, Quw �uwIV/uwII (Fig. 6e), as well as the correlation coefficient
between the u and w components Ruw � 〈

u′w′〉/uw, representing the efficiency of turbulence
for momentum transport. These parameters quantify the overall relative contributions of
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ejections and sweeps to themeanmomentumflux. Inmost regions, the value of uw is negative,
especially around the yellow dash–dot lines, with the uw peaks indicating the concentration
of uw within the central part of the shear layer. Interestingly, the fluxes uwII and uwIV show
different features. Whereas large values of uwII occur in the region enclosed by the white
and yellow dash–dot lines with the maximum at x �3h and z′ �h, large uwIV values occur
below the central part of the shear layer, with the maximum at x �2.5h and z′ �0.7h, which
suggests that ejections dominate sweeps above the shear layer and the inverse situation occurs
below the shear layer. The ratio Quw reflects the relative contribution of ejections or sweeps
to the vertical momentum flux. The contour line of Quw �1 in Fig. 6e (i.e., uwII �uwIV)
almost coincides with the yellow dash–dot line, with Quw >1 below and Quw <1 above. The
largest values of Quw appear at the locations of unsteady or flapping flow just downstream
of the recirculation. At the hilltop, the correlation coefficient Ruw, which is a measure of
the turbulent-transport efficiency, is low (approximately −0.1), and increases rapidly to its
equilibrium value (approximately −0.4) at around x �5h (Fig. 6f). Within the separation
region, due to the existence of the recirculation, the values of u and w show large negative
correlations with a maximum magnitude of −0.6 at the upper boundary of the bubble, and
the closely packed contours of Ruw within the shear layer downstream of the hill are clearly
observed.

The distributions of the skewness of the velocity components ũi , Skui �u
′3
i /u

′3/2
i , provide

information about the symmetry of the probability distribution of the fluctuations ui around
the mean value. The kurtosis of ũi , Kuui �u

′4
i /u

′2
i , which denotes the peakedness of the dis-

tribution, is shown in Fig. 7c–e. Note that the skewness of any univariate normal distribution
is zero, and the kurtosis of any univariate normal distribution is 3. Further, the kurtosis should
never be less than one, and is 1.8 under the uniform probability density function (p.d.f.). Note
that the contour line of the streamwise velocity skewness Sku �0 implies a symmetric p.d.f.
(Fig. 7a). The large negative value of Sku is primarily confined within the region bounded
by the yellow and white dash–dot lines, indicating that the tail on the left side of the p.d.f.
is longer or wider than the right side. Because of the symmetry of the hill, the p.d.f. of the
spanwise velocity component should be zero at y�0 if the sampling time is long enough, and
so the distributions of the spanwise velocity skewness Skv at y �0 are not included in Fig. 7.
The recirculation and the region within the wake depth are characterized by the minimum
vertical velocity skewness Skw, and are bounded by the maximum value of Skw at the top of
the wake, with a value of about 1.5 at x �10h. The skewnesses Sku and Skw have similar
distributions but opposite signs. The kurtosis for the three velocity components (Kuu , Kuv ,
Kuw) have similar distributions, with peaks at the upper boundary of the wake, and maximum
values of 15, 8, and 15 for the x, y, and z components, respectively (Fig. 7c–e), indicating
very steep p.d.f. shapes. Therefore, we imagine that the tails of the p.d.f. of the velocities
asymptotically approach zero more slowly than a Gaussian distribution, which, therefore,
produces more outliers than the normal distribution. Away from the shear-layer region, the
kurtosis recovers to almost a value of 3, indicating that the p.d.f. nearly achieves a normal
distribution or the flow reaches complete mixing.

The local rotation rate of the flow can be quantified by the time-averaged enstrophy as
half the square of the relative vorticity E �ωiωi/2, where ωi is the instantaneous vorticity
component of the flow along xi, ωi � εi jk∂ ũk/∂x j . The Q-criterion, which quantifies the
relative amplitude of the rotation rates and the strain rate of the flow, and thus identification of
vortex cores (Shekar andGraham2018; Tian et al. 2018), is Q � 1/2(Si j Si j−Ωi jΩi j ), where
Si j � 1/2(∂ ũi/∂x j−∂ ũ j/∂xi ) and Ωi j � 1/2(∂ ũi/∂x j + ∂ ũ j/∂xi ) are the antisymmetric
and symmetric components of the velocity-gradient tensor, respectively. The enstrophy starts
to increase at the hilltop, and is confined within the growing layer, exhibiting a maximum
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at 0.5h downstream of the hilltop (Fig. 7f). As with the value of v, two peaks in the vertical
direction are also observed, with one at the centre of the shear layer, and the other close to
the ground, which is an indication of different turbulence processes near the shear layer and
the ground (see Sect. 3.5 for details). Large eddies are clearly identified in the Q distribution
(Fig. 7g), which are generated just downstream of the hilltop and then pass through the
shear-layer region, providing the concentrated skewness and kurtosis there.

Two-point space–time correlations of the velocity components provide spatial information
related to the size of the main turbulent structures, and have been applied in wind-tunnel
experiments (Shaw et al. 1995), field observations (Raupach et al. 1991), and LES studies
(Su et al. 2000; Dupont and Brunet 2008). With respect to the four reference points (P1, P2,
P3, and P4) in Fig. 3a, the zero time-lag two-point correlation coefficients are determined for
the three velocity components as

Rui ui (x, y, z) � ui (x, y, z)ui (xref, yref, zref)

ui (x, y, z) · ui (xref, yref, zref) , (14)

where (xref, yref, zref) are the coordinates of the reference points (P1, P2, P3, and P4).
The contours of the correlation of the streamwise velocity, Ruu, for the four reference

points from x �−2.5h–5h on y �0 are shown in Fig. 8a, b, g, and h. The location z′ �1.25h
is the reference as it is mainly within the shear-layer region as identified by the wake depth
and the centre of the superimposed shear layer (Fig. 8). Well upwind from the hilltop, the
coefficient Ruu(P1) shows a tilted, elongated elliptical region of approximately 3h in the x-
direction and 2h in the z-direction (Fig. 8a). The latter feature ismore obvious for the contours
of Ruu(P2), which show a weak correlation with the wind speed in the wake region, and the
correlation area of Ruu(P2) is more concentrated near the hilltop (Fig. 8b). This implies that
strong coherent turbulent structures in the upwind flow are mostly advected above the wake
area, as demonstrated by the animations of the simulated vortices (not shown). Large values
of Ruu(P3) are mostly confined within the shear-layer region (Fig. 8g), and the size extension
along the x-direction is approximately equal to the height h,which is about one-third of those
in the Ruu(P1) and Ruu(P2) correlations, suggesting that very small turbulent structures exist.
Consequently, we conclude that these small turbulent eddies close to the point P3 are mainly
produced by shear. With increasing distance from the hilltop at the point P4, the vertical and
longitudinal scales increase with the depth of the wake region (Fig. 8h).

The spanwise velocity correlations Rvv at points P1–4 are provided in Fig. 8c, d, l and j,
illustrating clearly that the structure of the Rvv(P1) and Rvv(P2) contours (Fig. 8c, d) is similar
for the coefficients Ruu(P1) and Ruu(P2) (Fig. 8a, b), with Rvv(P1) and Rvv(P2) likely more
sensitive to the presence of the hill, as is evident in the remarkably tilted zones compared
with the Ruu(P1) and Ruu(P2) contours. Note that the orientations of the ridges of Rvv(P1)
and Rvv(P2) contours are almost parallel to the slope of the hill, with the high Rvv(P3) values
concentrated just behind the hilltop (Fig. 8l). However, the tilt direction of the contour is
opposite to that of the Ruu(P3) contour. The negatively correlated values below the shear
layer are associated with a flow rotation, as demonstrated in Sect. 3.5, and is a feature also
observed for the coefficient Rvv(P4) (Fig. 8j).

Correlations for the vertical velocity component Rww show several different features from
the coefficients Ruu and Rvv (Fig. 8e, f, k, l), with major differences that the Rww zones
are elongated more along the z- than the x-direction, and that Rww values are negative both
upstream and downstream of the points P3 and P4 (Fig. 8k, l). The strong correlation zones
appear periodically (Fig. 8k), and are associated with the large vortices identified in Fig. 7g.
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Fig. 8 Contours of the autocorrelation function for the streamwise velocity component Ruu computed for the
reference points: a P1, b P2, g P3, h P4, spanwise velocity component Rvv for the reference points, c P1, d
P2, i P3, j P4, and vertical velocity component Rww for the reference points, e P1, f P2, k P3, l P4, on the
vertical cross-section at y �0. The white and yellow dash–dot lines denote the boundary of the wake depth
and shear layer, respectively. The black dashed lines show the boundary of the separation bubble with zero
mean streamwise velocity. The x- and z-axes are normalized by the height h

3.3 Flow Characteristics on the Plane z′ � 0.25h

To reconstruct the 3D mean and turbulent fields over the 3D hill in detail, these quantities
on the planes z′ �0.25h and z′ �1.25h are examined here. Taking into account the 1:1000
scale in the wind-tunnel experiment in Ishihara and Hibi (1998), the planes z′ �0.25h and z′
�1.25h correspond to 10 m and 50 m above ground level, respectively. Meteorological data
at 10 m above ground are usually used to determine the wind-speed profiles for wind-energy
applications, and a height of 50 m is generally located within the shear-layer region.

In Figs. 9, 10 and 11, the white and yellow dash–dot lines represent the boundary of the
wake and the location of the centre of the shear layer, respectively, while the thick, dashed
black circle denotes the 3D hill. The blockage of the hill causes positive pressure values
initially (Fig. 9a), which quickly become negative at x �−h, resulting in flow acceleration
(Fig. 9c). Due to the symmetry of the hill and the incoming flow, four regions with large
values of V at the lateral sides of the hill are generated at approximately x �−h and 2.5h and
y �±1.5h when the flow passes around the hill (Fig. 9e). The blockage of the flow causes
upwards motion upstream of the hill (positive W values), and the two downwards zones
(negativeW values) occur in the same locations as those with the large V values at the lateral
sides of the hill (i.e., x �2.5h) (Fig. 9g). As a result of these two downwards convergence
flows behind the hill, the separation of the flow is generated in the region indicated by the
red circle in Fig. 8.
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Fig. 9 Contours of the mean and fluctuating flow parameters: the a mean and b r.m.s. pressure, and the cmean
and d r.m.s. streamwise, e mean and f r.m.s. spanwise, and g mean and h r.m.s. vertical velocity components
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At the hilltop, the parameters p and u show peak values due to flow separation (Fig. 9b, d),
though these peaks are not global maxima, which are instead located at y �±h, where the
normalized p and u values reach 0.12 and 0.35, respectively. Through connecting the crests of
the u contours (i.e., the yellow dash–dot line), the region enclosed by the shear layer shrinks
after the flow passes the hill, and becomes narrowest at about x �3h, followed by a gentle
monotonous expansion. After x �7h, the crests of the u contours gradually disappear. The
red dashed circles with a longitudinal width of 1.5h and the lateral width of 1.8h in Fig. 9
have a zero streamwise velocity component, suggesting recirculation with the remarkably
small ui values as compared with those within the shear layer, and thus a relatively stagnant
flow within this recirculation region. The v and w values are large just after the stagnant-flow
region, reaching values of 0.28Uh and 0.23Uh (Fig. 9f, h), respectively.

Within the recirculation circle, theTKE is quite small (Fig. 10a), the values ofuw (Fig. 10b)
and Ruw (Fig. 10f) peak at the centre of the shear layer, uwII values peak almost along the
yellow dashed lines (Fig. 10c), while large uwIV values are confined by the shear layer
(Fig. 10d), as also identified along the vertical cross-section at y �0 (see Fig. 6c, d). Beyond
the neck of the shear-layer region, the ejection area expands, whereas the sweeping area
shrinks. The value of Quw shows that sweeping dominates at the centre of the wake, while
ejection dominates within the shear layer.

The skewness Sku for the area enclosed by the shear-layer centre is positive, but negative
in the shear-layer region (Fig. 11a), with the contour line for Sku �0matching the central line
of the shear layer denoted by the yellow dashed lines. The skewness Skw has the same pattern
as Sku (Fig. 11e) and the non-zero value of Skv at the wake centre is simply due to our short
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sampling time (Fig. 11c). Outside of the wake, however, the value of Skv becomes negative,
and approaches its maximum at x �3h and y �±2h. The skewness Skui shows a consistent
pattern, with peak values found along the wake boundary (Fig. 11a, c and e). Both the peak
values for Kuu and Kuv ≈8 (Fig. 11b, d), which is approximately half the peak Kuw value,
implying that the shape of the p.d.f. for the vertical velocity component is much steeper than
those of the streamwise and spanwise velocity components, or, in anotherwords, themixing of
the vertical velocity component is not as complete as for the horizontal velocity components.

Large enstrophy values mostly concentrate at the separation line, before reducing quickly
with downstream distance (Fig. 11g). The contour of Q indicates large eddies wandering
laterally and forming a kind of von Kármán vortex street. Together with the enstrophy Q at y
�0, the large eddies not only wander up and down but also laterally in a periodic pattern, as
confirmedmore clearly from the 3D view ofQ shown in Sect. 3.4. Note that the points P1–P4
do not appear on z′ �0.25h, suggesting that the correlations at the locations h removed from
the reference points approach vertically almost a value of zero (Fig. 8).

In general, the data on the plane z′ �0.25h demonstrate highly 3D flow statistics. High
values of the parameters u, Skui and Kuui concentrate in the shear-layer region consistent
with the data on the plane y �0. Interestingly, sweep events dominate at the centre of the
wake, while ejection events dominate within the shear layer. In the separation region, due
to the existence of the recirculation bubble, the velocity components u and w are largely
negatively correlated at the upper bubble boundary, and high values of Ruw are concentrated
within the shear layer downstream of the hill.

3.4 Flow Characteristics on the Plane z′ � 1.25h

To understand the extent to which the observed features of the flow on the plane z′ �0.25h
reach higher elevations, the flow characteristics on the plane z′ �1.25h are discussed below.
On this surface, the magnitudes of speed-up of the values of V and W become almost neg-
ligible (Fig. 12e, g), though the speed-up for the value of U remains, indicating an almost
constantW profile at the hilltop and a large regionwith highW values (Fig. 12g). Note that the
wake zone is still present, but the separation bubble disappears, and the shear layer becomes
weakened on the plane z′ �1.25h (compare Fig. 9with Fig. 12). Unlike the fluctuations on the
plane z′ �0.25h, all fluctuation peaks concentrate along the line y �0, showing the maxima
at about x �4h, except for the value of p with its maximum at about x �2.5h (Fig. 12b, d, f,
h). The values of these maxima on z′ �1.25h are approximately half of those on z′ �0.25h
due to the decreased influence of the hill. The value of uw is confined to the wake region
bounded by the white dash–dot lines. Ejections dominate sweeps with the largest ejections at
x �4h. Negative values of Ruw are present throughout the plane z′ �1.25h even upstream of
the hill where the value of Ruw is positive on z′ �0.25h (Fig. 13f). The distribution patterns
for the skewness Sku and Skw are almost the same, but with opposing signs (Fig. 14a, e)
similar to those on the plane z′ �0.25h (Fig. 11a, e). Positive and negative Skv values centred
on the plane z′ �1.25h are well organized as compared with those on the plane z′ �0.25h.
The extension of the peaks for the skewness Sku and Skw, and the kurtosis Kuui along the
boundary of the wake region are reduced on the plane z′ �1.25h compared with the plane z′
�0.25h (compare Fig. 11 with Fig. 14). When comparing the values of E andQ on the plane
z′ �1.25h with those on the plane z′ �0.25h, the three large vortices are still identified, but
the Q values are largely reduced, indicating a reduction in the vortex rotation intensity.

The widths of both Ruu(P1) and Ruu(P2) contours are on approximately the same scale as
the height (Fig. 15a, b), indicating an almost circular contour on the y–z cross-section (Fig. 8a,
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Fig. 13 Contours of the normalized a TKE, b vertical momentum flux uw, c vertical momentum flux in the
second quadrant uwII, d vertical momentum flux in the fourth quadrant uwIV, e the ratio between the vertical
momentum flux in the fourth and second quadrants Quw, and f correlation coefficient between streamwise
and vertical velocity components Ruw on the plane z′ �1.25h. The black dashed circle indicates the 3D hill.
The white dash–dot lines denote the boundary of the wake depth. The x- and y- axes are normalized by the
height h

b). Additionally, the closely-packed contours of Ruu values to the right and sparsely-packed
contours to the left of the point P2 indicate the presence of high wind speeds and turbulence
structures with large coherence. The large decrease in Ruu(P3) values with x, but still equal
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Fig. 14 Contours of skewness of a streamwise Sku, c spanwise Skv, e vertical Skw velocity components, and
kurtosis of b streamwise Kuu, d spanwise Kuv, and f vertical Kuw velocity components, the gmean enstrophy,
and h instantaneous Q-criterion on the plane z′ �1.25h. The black dashed circle indicates the 3D hill. The
white dash–dot lines denote the boundary of the wake depth. The x- and y-axes are normalized by the height h

to that on the plane y �0, indicates a large reduction of the wind speed and a strong mixing
(Fig. 15g). The magnitude of the correlation then increases with distance x as reflected by
the Ruu(P4) values (Fig. 15h). When compared with the Rvv values on the plane y �0 in
Fig. 15c, d, i, j, the contour of Rvv values on z �1.25h shows an elliptical shape, with more
correlations in the y-direction than in the z-direction. The value of Rvv(P1) increases rapidly
when approaching the upstream foothill, before exhibiting a smooth reduction from the
foothill to the hilltop (Fig. 15c). However, Rvv(P2) values show the reverse pattern (Fig. 15d).
After the flow passes the hilltop (Fig. 15i), the values of Rvv show roughly a circular pattern,
and do not exhibit a recovery as for the Ruu values, indicating the different contributions
of turbulence between the x-component and the y-component. The values of Rww(P1) and
Rww(P2) have similar contours (Fig. 15e, f), while elliptical Rww(P3) contours are presented
with an axis oriented in the y-direction as well as the negative correlation zone to the left, and
the positive correlation zone to the right (Fig. 15k), which are associatedwith the flow rotation
in the y-direction (Fig. 7g). At the point P4, the positive circular Rww(P4) contour lines in
Fig. 15l and the elliptical Rww(P4) contour lines in Fig. 8l suggest 3D spindle iso-surfaces.

In general, the data on the plane z′ �1.25h give clearly different flow statistics compared
with those on the plane z′ �0.25h. For example, the turbulent fluctuations and themomentum
flux concentrate at the centreline, while the skewness and kurtosis peak values are found in
the region enclosed by the boundary of the wake depth, since the z′ �1.25h surfaces cross the
shear-layer region at the plane y �0. Interestingly, even as the magnitude of the fluctuations
decreases with z′, the changes in the peak skewness and kurtosis values are not obvious,
indicating similar p.d.f. velocities in the shear-layer region regardless of the height.
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Fig. 15 Contours of the autocorrelation function for the streamwise velocity component Ruu computed for the
reference points a P1, b P2, g P3, h P4, spanwise velocity component Rvv computed for the reference points
c P1, d P2, i P3, j P4, and vertical velocity Rww computed for the reference points e P1, f P2, k P3, l P4,
on the plane z′ �1.25h. The red points show the locations of the reference points. The black dashed circle
indicates the 3D hill. The white dash–dot lines denote the boundary of the wake depth. The x- and y-axes are
normalized by the height h

3.5 Three-Dimensional View of the Instantaneous Flow Fields

The instantaneous 3D flow fields using Q iso-surfaces enable demonstration of the 3D influ-
ence of the hill on the flow as shown in Fig. 16, with an isometric view in Fig. 16a, and
a top view in Fig. 16b. The green solid line connects the hilltop with the points [x, y, z]�
[0, 0, h] and [x, y, z]� [10h, 0, h], and the white, dashed spiral line, which is determined
by the velocity-gradient eigenmode method, illustrates the major core centre of the vortex
downstream of the hill. The values of L1 and L2 show the spanwise distance from the vortex
centre to the green solid line at x �3.5h and x �6.5h, respectively, and D1 and D2 are the
vertical distances, respectively. Vertical periodic shedding is expected to provide the negative
correlations for the vertical velocity component as discussed in Sect. 3.1. Additionally, there
are secondary rotations in the wake flow, as illustrated by the yellow dashed lines with the
arrows denoting the rotation direction. These secondary rotations suggest that, when the flow
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Fig. 16 Instantaneous flow fields visualized byQ-criteria from, a isometric, and b the top view. The transparent
effects are used for the iso-surfaces of Q values to show the flow structures. The green solid line starts from
the hilltop (i.e., x � [0h, 10h], y �0, z �h). The white dashed line in Fig. 15a, b locates the major core of the
vortex downstream of the hill. The yellow dashed lines indicate the secondary rotation of the wake flow. The
red dashed line denotes the boundary of the 3D hill and the thick arrow shows the flow direction. The two
blue lines are the locations of the vertical slices of the x component of vorticity, L1 and L2 show the spanwise
distance from the vortex centre to the green solid line at x �3.5h and x �6.5h, respectively, and D1 and D2
are the vertical distances, respectively. Distributions of the vorticity of the x-component ωx on the plane of
c x �3.5h and d x �6.5h. The red dashed lines in Fig. 15c, d denote the 3D hill. The x-, y-, and z-axes are
normalized by the height h

in the upper part of the wake region moves in a positive y-direction, the flow in the lower
part moves in the negative y-direction. As a result, the negative Rvv(P3) and Rvv(P4) values
in the lower part of the wake flow are observed (Fig. 8i, j), which also lead to the two peaks
in the vertical profiles of the v velocity component.

Instantaneous flow structures may be examined on the planes x �3.5h and x �6.5h using
the vorticity of the x-component ωx � ∂ ũ/∂y−∂ṽ/∂x (Fig. 16c, d), with red positive and
blue negative values. The red dashed lines show the hill shape. The core of the vortex at x
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�3.5 is separated into two major regions, including inner rotation with positive ωx values,
and the outer rotation with negative ωx values. This feature is still clearly visible at x �6.5h,
with the lateral location of the core centre moving from 0.5h at x �3.5h to nearly h at x �
6.5h, further validating the existence of the lateral periodic wake shedding.

4 Conclusions

The 3D mean and turbulent flows over a hill were simulated and analyzed to yield the
following conclusions.

1. Thewake depth increases relatively rapidly from x�0 to x�5h, and experiences a gentle
increase as x increases. The height of the shear layer decreases slightly from the hilltop
to x �2.5h, and then increases at a rate greater than the increased rate for the wake depth.
The shear layer on the plane z �0.25h shrinks after the flow passes the hilltop, becoming
narrowest at approximately x �3h, and expanding gradually as x increases.

2. A flow separation with circulation clearly develops downwind of the hill with a negative
correlation of u and w values as a result of the convergence of the lateral flows, and the
streamwise flow passing over the hilltop.

3. Beyond the neck region of the shear layer, the ejection area expands,whereas the sweeping
area shrinks; sweeps dominate in the centre of the wake, and ejections dominate in the
shear layer.

4. The major vortex is not just a horizontally-orientated tube structure, but a spirally-shaped
structure wandering in both the lateral and vertical directions. In addition, the secondary
rotations are identified in the wake flow, leading to the two peaks in the vertical profiles
of the v component observed in many studies, and the negative Rvv(P3) values near the
ground. Another interesting feature is that the core of the vortex is separated into two
regions, with the inner rotation having positive ωx values, and the outer rotation with
negative ωx values.
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Şen Z (2003) A short physical note on a new wind power formulation. Renew Energy 28:2379–2382
Shaw RH, Brunet Y, Finnigan JJ, Raupach MR (1995) A wind tunnel study of air flow in waving wheat:

two-point velocity statistics. Boundary-Layer Meteorol 76:349–376
Shekar A, Graham M (2018) Exact coherent states with hairpin-like vortex structure in channel flow. J Fluid

Mech 849:76–89
Su HB, Shaw RH, Paw UKT (2000) Two-point correlation analysis of neutrally stratified flow within and

above a forest from large-eddy simulation. Boundary-Layer Meteorol 94:423–460
Tamura T, Cao S, Okuno A (2007a) LES study of turbulent boundary layer over a smooth and a rough 2D hill

model. Flow Turbul Combust 79:405–432
Tamura T, Okuno A, Sugio Y (2007b) LES analysis of turbulent boundary layer over 3D steep hill covered

with vegetation. J Wind Eng Ind Aerodyn 95:1463–1475
Tian S, Gao Y, Dong X, Liu C (2018) Definitions of vortex vector and vortex. J Fluid Mech 849:312–339
Zilker D, Cook G, Hanratty T (1977) Influence of the amplitude of a solid wavy wall on a turbulent flow. Part

1. Non-separated flows. J Fluid Mech 82:29–51

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123


	Large-Eddy Simulations of the Flow Over an Isolated Three-Dimensional Hill
	Abstract
	1 Introduction
	2 Computational Details
	2.1 Governing Equations
	2.2 Method for Simulating Roughness Elements
	2.3 Computational Domain
	2.4 Grid System
	2.5 Boundary Conditions
	2.6 Solution Scheme and Procedure
	2.7 Grid Independency and Validations

	3 Results
	3.1 Upwind Flow Properties
	3.2 Centreline Flow Characteristics
	3.3 Flow Characteristics on the Plane  z'   0.25h
	3.4 Flow Characteristics on the Plane  z'   1.25h
	3.5 Three-Dimensional View of the Instantaneous Flow Fields

	4 Conclusions
	Acknowledgements
	References




