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A B S T R A C T

Wind-induced vibration is significant for light and flexible structures, and aerodynamic effect has to be considered
in the estimation of wind load and dynamic response of these structures. The unsteady aerodynamic character-
istics of long-span roofs are investigated numerically in this paper using Large Eddy Simulation. Roofs under
forced excitation are simulated, and the distributions of aerodynamic coefficients on rigid and vibrating roofs are
estimated. The computed coefficients show good agreement with the experimental results. The influences of
inflow turbulence, shape of roof and other parameters on the aerodynamic coefficients are also analyzed. It is
found that the mean wind pressure coefficients mainly depend on the vortex shedding and reattachment positions.
These coefficients in the cases studied remain almost the same with increasing excitation frequency, while the
fluctuating pressure coefficients and unsteady aerodynamic coefficients change with frequency regularly. The
probability density functions of wind pressure on the vibrating roofs show obvious non-Gaussian characteristics,
and the wind pressure spectra exhibit peaks at the excitation frequencies. The dynamic response of long-span roof
is then predicted using the mechanical admittance function. Results show that the displacement response of the
structure will be under-estimated without considering the unsteady aerodynamic effect especially for flexible
structures.
1. Introduction

Long-span roofs have been widely used in recent years in stadium
halls, theaters, conference and exhibition centers, airport terminals and
other large-scale buildings. These structures are very sensitive to wind
load because of their lightweight and flexibility. The wind field around
structures changes under strong wind leading to distinct characteristics
of wind load on the structures. This phenomenon is called the Fluid-
Structure Interaction (FSI) (Shen and Wu, 2002). Structures may
absorb energy from wind because of the FSI effect under certain condi-
tions, e.g. at certain ranges of wind velocity. The vibration amplitude of
structures will increase greatly with possible aero-elastic instability
phenomena (Sharekh and Pathak, 2000). Several large flexible roof
structures have collapsed in the last several decades under wind actions,
e.g. the roof of Kumamoto Park Dome, in Japan 1999, the top of Jeju
World Cup Stadium, in Korea 2002, the roof of Pinghu Stadium, in China
2012, etc. (Chen, 2015). It is worth mentioning that these accidents
occurred under wind velocities lower than the design values. Most of
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wind-induced vibration analyses of long-span flexible roofs are based on
wind tunnel tests of rigid models where the FSI effect has not been
considered. This may lead to an under-estimation of the wind effect on
flexible structures under strong wind resulting in potential hazards (Yang
et al., 2010).

Theoretical analysis has been applied to study the FSI effect and aero-
elastic instability of long-span structures. The dynamic equations of fluid
and structure can be simplified based on assumptions. The critical con-
dition for aero-elastic structural instability is always obtained from
methods like eigenvalue analysis. Kunieda (1975) presented a method to
determine the critical flutter wind velocity of two-dimensional hanging
roofs and curvedmembrane roofs. The governing equations were derived
based on classical flow theory with the vortex in the boundary layer and
the flow separation around structure neglected. Kimoto and Kawamura
(1983) derived the dynamic equation of a one-way suspended roof in
uniform flow with the modified thin-wing theory and the revised
Kutta-Joukowski condition. They proposed the criterion on the wind
velocity of aero-elastic instability by using the conservation principle of
gqing, 400044, China.
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potential energy. Yang and Liu (2005) derived theoretical equations for
calculating the additional mass and aerodynamic damping based on the
simplified potential fluid theory. They also presented an analytical for-
mula for the critical wind velocity of wind-induced instability for a
three-dimensional roof, where the effect of negative aerodynamic
damping could be considered by combining the non-moment theory of
thin shells and the potential fluid theory. However, the above theoretical
studies do not include turbulent inflow conditions and bluff body aero-
dynamic effects despite their importance (Tamura and Kareem, 2013).

Wind tunnel experiment of aero-elastic model is one of the common
methods to identify the unsteady aerodynamic coefficients of long-span
roofs. The previous experimental studies are mainly on one-way roofs
which can be simplified as two-dimensional problems and are sensitive to
wind due to their poor stabilities. These studies show that the roofs will
resonate under vortex shedding at certain wind velocities. The unstable
vibration mode of roof is the first-order asymmetric mode with the vi-
bration amplitude limited rather than divergent. This phenomenon is
called “lock-in”. Matsumoto (1990) found that the first-order asymmetric
mode of the roof would be self-excited, because the frequency of vortex
separated at the leading edge of the roof was coupled with the frequency
of the first-order asymmetric mode of the roof. Miyake et al. (1992)
showed that the Karman vortex shedding around roofs is the main cause
of wind-induced vibration. Chen et al. (2015) carried out a wind tunnel
test for a closed type one-way tensionedmembrane structure in a uniform
flow. The frequency of vortex shedding at low wind velocity was found
much lower than the structural natural frequency. When the wind ve-
locity increased and vortex shed at a frequency close to the structural
frequency of the first asymmetric mode, the structure would be forced to
vibrate and the phenomenon of lock-in occurred. Although the
displacement characteristics of the roof can be identified from experi-
ments with the aero-elastic model, yet the wind load test is not easy to
conduct with the lightweight and flexibility of the long-span roof model.
The test results are also influenced by the presence of the pressure sensors
resulting in unsatisfactory similarity conditions on the material
properties.

Since most evidences (Matsumoto, 1990; Chen et al., 2015) show that
the one-way long-span roof vibrates in the first order asymmetric mode
under wind action with limited vibration amplitudes, forced vibration
test has been popularly used to obtain the unsteady aerodynamic forces
instead of the aero-elastic model test. Daw and Davenport (1989) ob-
tained the aerodynamic forces on a semi-circular roof based on forced
vibration experiment, and they commented that the aerodynamic forces
depended on the inflow velocity, vibration frequency and amplitude
whereas they had little relationship with the inflow turbulence and the
Reynolds number. Ohkuma and Marukawa (1990) showed that with
increasing vibration frequency and amplitude, the aerodynamic stiffness
coefficient of long-span flat roofs would increase, and the aerodynamic
damping coefficient would decrease from positive to negative. Kawai
et al. (1999) studied the aerodynamic properties of a large cantilevered
roof using forced vibration experiments, and they found that the fre-
quency of the sharp peak in the wind pressure spectrum was the natural
frequency of the roof lowered by the positive aerodynamic stiffness co-
efficients. The lowered natural frequency synchronized with the fre-
quency of vortex shedding at the leading edge of the roof, and this caused
negative damping coefficients.

There are, however, limitations in the forced excitation experiments.
The excitation system is complicated, and higher vibration modes of the
roof model are difficult to obtain (Daw and Davenport, 1989). This kind
of test can only be used to obtain simple vibration modes with small
vibration amplitudes, whereas Computational Fluid Dynamic (CFD)
analysis performs better for complicated vibration modes and large vi-
bration amplitudes. Oka and Ishihara (2009) investigated the unsteady
aerodynamic characteristics of a square prism in a uniform flow at
various angles of attack using Large Eddy Simulation (LES) turbulence
model. The numerical results of mean aerodynamic coefficients, surface
pressures, and flow patterns for all angles of attack had good match to the
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experimental results. Ding et al. (2014) studied the unsteady aero-
dynamic force coefficients of long-span curved roof using LES model also
with good results. Nevertheless, the numerical study on the unsteady
aerodynamic characteristics of long-span roofs is still limited so far. Ac-
curate numerical prediction of aerodynamic forces on the flat roof with
strong flow separation is a challenge. The aerodynamic mechanism of the
vibrating roof is also not fully understood. The influences of roof shape,
inflow turbulence and vibrating condition on the aerodynamic phe-
nomena need to be studied further. The LES turbulence model has been
shown an exhibit superior performance in the simulation of strong sep-
aration flows near structures and the precise prediction of wind load on
the surface of structure (Ferziger and Peric, 2002). Therefore,
three-dimensional LES is used in this paper to simulate a flat and a curved
roof with turbulent inflows. The predicted wind pressure coefficients and
unsteady aerodynamic force coefficients are compared with experi-
mental results for the validation of the numerical method. The unsteady
aerodynamic characteristics and behavior of long-span roofs are analyzed
with the wind load coefficients and the flow patterns. The dynamic
response of flexible roof is finally obtained with consideration of the
unsteady aerodynamic effect.

2. Numerical model and parameters for the studies

2.1. Governing equations

In the following LES analysis, large eddies are directly computed in
simulations, while the influence of eddies smaller than the control vol-
ume are parameterized. The governing equations for the LES analysis are
derived by filtering the continuity and Navier-stokes equations as
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where xi and xj are the coordinates. The subscript i and j stand for
different directions in Cartesian coordinates include streamwise, span-
wise and vertical directions, and t is time instant. The~ denotes the
filtered component; ~u and ~p are filtered velocity and filtered pressure
respectively. μ and ρ are the viscosity and density of air respectively, and
τij is the subgrid-scale stress defined by

τij ¼ ρ~ui~uj � ρguiuj (3)

The subgrid-scale stresses resulting from the filtering operations are
unknown, and they are modelled as

τij ¼ �2μt~Sij þ
1
3
τkkδij (4)

where μt is the subgrid-scale turbulent viscosity, and δij is the Kronecker
delta. ~Sij is the rate-of-strain tensor for the resolved scale defined as
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Smagorinsky model (Smagorinsky, 1963) is adopted to model the
subgrid-scale turbulent viscosity, μt, as
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and Ls is the mixing length of subgrid-scales defined
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Table 1
Details of reference works.

Roof
shape

Method Re number ρUH/μ Inflow
condition

Mean roof
height H (cm)

Vibration
amplitude z0

Vibration
frequency fm

Ohkuma and Marukawa (1990) flat experiment 2.5� 104 Uniform
turbulence

6 1.7%-10%H 5–50Hz

Ding et al. (2014) curved experiment and
CFD

2.7� 104 ABL 8 5%H 5–25Hz (exp.)
10–160 Hz (CFD)

Note: U denotes the mean wind velocity at the mean roof height H. ABL stands for the atmospheric boundary layer flow.
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(a) Flat roof (b) Curved roof

Fig. 1. Geometry of roof model.
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where κ is the von Karman constant and is taken equal to 0.42. Cs is
Smagorinsky constant. d is the distance to the closest wall, and V is the
volume of a computational cell.

In general, Cs¼ 0.1 is widely used in the simulation with finite vol-
ume/difference methods (Ferziger and Peric, 2002). Most of them
employ explicit discretization scheme for the unsteady term in which
negative numerical diffusion is inherently contained. On the other hand,
numerical schemes with few diffusions such as spectrum method use
small Cs values. In this study, the second order implicit discretization
scheme is utilized, in which the numerical diffusions are few and posi-
tive. Ma et al. (2000) conducted a systematic study on the flow around a
circular cylinder. The aerodynamic coefficients obtained by using
Cs¼ 0.032 are closest to those obtained by the spectrum method. This
value is adopted for all the studies in this report.

When a wall-adjacent cell is in the laminar sub-layer, the wall shear
stress is obtained from the laminar stress-strain relationship as

~u
uτ

¼ ρuτy
μ

(8)

where ~u is the filtered velocity that is tangential to the wall; uτ is the
friction velocity; y is the distance between the center of the cell and the
wall. If the mesh cannot resolve the laminar sub-layer, it is assumed that
the centroid of the wall-adjacent cells falls within the logarithmic region
of the boundary layer, and the law-of-the-wall is employed as

~u
uτ

¼ 1
κ
ln E

�
ρuτy
μ

�
(9)

where the constant E is taken equal to 9.8.

2.2. Reference experiments

The experimental and numerical results by Ohkuma and Marukawa
(1990) and Ding et al. (2014) serve as reference for validation of the
proposed method, and details of them are summarized in Table 1. The
model sizes, span/height ratios and the Reynolds numbers in these two
cases are similar. The reference studies have been conducted under
well-controlled laboratory conditions with turbulent inflows, high Rey-
nolds numbers (>10000) and low blocking rates (<5%). Other param-
eters like inflow profiles, mean and fluctuating pressure coefficients and
unsteady aerodynamic forces can also be found in the above references.

The displacement of the roof zj under forced vibration is of the first
anti-symmetric mode given as

zjðs; tÞ ¼ φjðsÞxjðtÞ (10)

φðsÞj¼1 ¼ sin 2 π
s
Rs

(11)

xjðtÞ ¼ z0 sinð2πfmtÞ (12)

where φj and xj are respectively the mode function and generalized
displacement in the jth mode; s denotes the distance from the leading
edge of roof and Rs is the total length of the roof; z0 and fm are the
48
amplitude and frequency of forced excitation respectively. These shape
parameters of the roof model and the vibration mode are shown in Figs. 1
and 2 respectively.

2.3. Numerical model

The calculation domain and mesh configuration of the numerical
model are shown in Figs. 3 and 4 respectively. The dimensions of the flat
roof are 0.36m� 0.4m� 0.06m (L�W�H), where L, W and H repre-
sent the length, width and eaves height of the flat roof above ground
respectively. Uniform turbulent inflow of 7% turbulence intensity is
generated by grid as shown in Fig. 3(a), same as that in the experiment of
Ohkuma and Marukawa (1990). The dimensions of the curved roof are
0.4 m� 0.24m� 0.08m (L�W�H) with the rise/span ratio r/L¼ 0.15,
where H represent the mean height of the curved roof. The inflow is the
atmospheric boundary layer turbulence flow generated by spires and
roughness blocks as shown in Fig. 3(b), similar to that in the experiment
of Ding et al. (2014). Both Fig. 4(a) and (b) show the refined mesh at roof
corners with 60 nodes in the roof height direction. Mesh interval size in
the width direction is 3W/20. The corner of the flat roof is modified into
a curve as shown in Fig. 4(c). The curve diameter is H/100 and a mesh
with small cells is generated near each corner to avoid singularity of the
solutions, similar as Sarwar and Ishihara (2010). Such small roundness
ratio does not significantly affect the flow characteristics. Fig. 4(d) is the
unstructured mesh around grid adopted to generate the uniform turbu-
lent inflow. The wind field mesh around the spires in Fig. 3(b) is also
unstructured similar to Fig. 4(d), and is omitted here.

The mesh independency of the solution has been checked with
meshes of different refinements. The final mesh at convergence of the
numerical results with further refinement is used for all subsequent an-
alyses in this paper. Results show that the first mesh size normal to the
wall, Δy, should be small enough and the value of Δyþ, the step of non-
dimensional viscous length scale defined as Eq. (13), should be less than
or equal to unity to simulate the separated vortices.

Δyþ ¼ ρuτΔy
μ

(13)

The dependency of time step dt is also checked. The final non-
dimensional time step dtU/H at convergence of numerical results with
smaller time step is used in subsequent analyses. The aerodynamic pa-
rameters are calculated for the duration of tU/H¼ 1000. Results of the
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Fig. 2. Vibration mode (First anti-symmetric mode).
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Fig. 4. Mesh arrangement.
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initial tU/H¼ 400 time duration are ignored to remove the influence of
end effect of data. The final mesh and calculation parameters are shown
in Table 2.

The ground and structure surfaces are set as no-slip walls in this
research. Uniform velocity condition is specified at the inlet boundary,
and zero diffusive condition is adopted at the outlet boundary. Symmetry
condition is given for the upper boundary. The side boundary is generally
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taken as symmetry boundary to reduce the boundary effect of the model
at the center of computational domain. However, sectional model is used
in this study to minimize the numerical mesh and computational effort,
i.e. the width of the roof model is taken the same as that of the whole
computational domain. Large fluctuation of inflow turbulence and
aerodynamic force are expected in the cross-wind direction for sectional
model with symmetric side boundary. Periodic side boundary condition



Table 2
Parameters of numerical model.

Flat(r/L¼ 0) Curved(r/L¼ 0.15)

Mean wind velocity U 6m/s 5m/s
Turbulent intensity Iu 7% 19%@H
Excitation amplitude z0 0.05H 0.05H
Excitation frequency fm 10–50 Hz 10–50 Hz
Computational domain 12m(x)� 0.4m(y)� 2m(z) 12m(x)� 0.24m(y)� 2m(z)
Roof size 0.36m(x)� 0.4m(y)� 0.06m(z) 0.4 m(x)� 0.24m(y)� 0.08m(z)
Mesh of roof 230(x)� 60(y)� 60(z) 120(x)� 36(y)� 60(z)
The number of total mesh 5.68� 106 2.42� 106

Non-dimensional time step size (dtU/H) of steady case 0.02 0.02
Non-dimensional time step size (dtU/H) of unsteady case 0.005 0.005
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Fig. 5. Wind profile of uniform turbulence flow.
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is found to reduce such fluctuation efficiently (Hirsch, 2007), therefore it
is adopted in the subsequent analyses of this report.

2.4. Dynamic mesh

Diffusion-based smoothing method is used to update the volume
mesh in the roof region subject to the motion defined at the boundaries.
This is accomplished by a User Defined Function (UDF) in ANSYS Fluent.
When smoothing method is used to adjust the mesh of a zone with a
moving and/or deforming boundary, the interior nodes of the mesh
move, but the number of nodes and their connectivity does not change. In
this way, the interior nodes “absorb” the movement of the boundary. This
(a) Mean wind velocity
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Fig. 6. Wind profile of atmosp
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mesh motion is governed by the diffusion equation (ANSYS Inc., 2015),

r � ðγruÞ ¼ 0 (14)

where u is the mesh displacement velocity. γ is the diffusion coefficient
defined as a function of the cell volume with the following form:

γ ¼ 1

V
α (15)

where V is the normalized cell volume. Diffusion Parameter α ¼ 1.0
denotes that larger cells absorb more motion than the smaller cells and
therefore the quality of smaller cells is well preserved.
(b) Turbulence intensity
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(a) Mean pressure coefficients (b) Fluctuating pressure coefficients
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Fig. 8. Mean vorticity contours with different dimensionalities and inflow conditions.
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2.5. Solution scheme and solution procedure

The 3D unsteady LES filtered Navier-Stokes equations are solved with
the commercial CFD code ANSYS Fluent 16.2 (ANSYS Inc., 2015) using
the control volume method. The second-order central difference scheme
is used for the convective and viscosity terms, and the second-order
implicit scheme is used for the unsteady term. SIMPLE (semi-implicit
pressure linked equations) algorithm is employed for solving the dis-
critized equations (Ferziger and Peric, 2002).

3. Verification of numerical results

The wind fields around structures are always turbulent and this
condition is highly influential to the aerodynamic phenomenon. Grid is
used to generate the uniform turbulent inflow in the numerical simula-
tion of the flat roof, and spires and roughness blocks are used to generate
the atmospheric boundary layer turbulence for the curved roof as pre-
viously stated. These conditions are the same as the reference experi-
ments (Ohkuma and Marukawa, 1990; Ding et al., 2014). The wind
profiles are shown in Figs. 5 and 6 with the mean roof heights shown as
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transverse solid lines and mean wind velocity donated as Uz. The nu-
merical wind velocity and turbulence intensity profiles are noted basi-
cally consistent with those in the reference experiments with the relative
errors less than 10% near the roof height.

Two-dimensional results with laminar inflow and three-dimensional
results with laminar and turbulent inflow are shown in Fig. 7 for the
discussion on the influence of calculation domain dimension and inflow
turbulence. The wind pressure coefficient CpðtÞ is defined as:

CpðtÞ ¼ pðtÞ � pref
qH

(16)

where pref is the reference pressure near outlet; qH ¼ ρU2=2 represents
the dynamic pressure at the roof height. The mean and standard devia-
tion of the wind pressure coefficient are the mean wind pressure coeffi-
cient Cp and fluctuating wind pressure coefficient C'

p respectively. Results
for rigid curved roofs and curved roofs vibrating at fm¼ 90 Hz are studied
since the difference of numerical results under different calculation
conditions are distinct at high vibration frequency. These results are
compared with the numerical results of Ding et al. (2014) with 3D
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Fig. 10. Mean streamline around flat roof with different vibration frequencies.
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calculation and turbulent inflow. Fig. 8 shows the time averaged vorticity
contours which help to explain the behavior of the distributions of
pressure coefficients.

It is noted that for the same simulation condition, the mean wind
pressure coefficients change slightly no matter the roof vibrates or not
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(Fig. 7(a)). The corresponding mean flow fields for the rigid and
vibrating roofs in each condition are similar. However, the results of
different simulation conditions are distinct. The mean pressure co-
efficients of the 2D roof with laminar inflow exhibit two peaks, located in
the middle of the roof and s/Rs¼ 0.7. The first peak is caused by the
acceleration of wind, and the second one is due to the flow separation, as
shown in Fig. 8(a) and (b). For the simulation of 3D domain with laminar
inflow, the second peak becomes smaller compared with the 2D results
because the vortex intensity decreases from 2D to 3D together with the
intensity of wind suction (Fig. 8(c) and (d)). Additionally, the mean
pressure coefficients of the 3D roof with turbulent inflow exhibit only one
peak near the middle of roof. It can be understood that the inflow tur-
bulence causes an early transition of the boundary layer on the roof
surface from laminar to turbulent. Thus the boundary layer is able to
withstand better the adverse pressure gradient with turbulent inflow, and
the flow separating position moves towards the trailing edge as shown in
Fig. 8(e) and (f) such that the second peak caused by the wind separation
does not exist.

The fluctuating wind pressure coefficients are low on the rigid roof,
but they increase dramatically on the vibrating roof (Fig. 7(b)). The
distributions of fluctuating wind pressure coefficients are consistent
with the vibration mode, with larger coefficients at positions with
larger vibrating amplitude, and the peak values appear near the po-
sitions at s/Rs¼ 1/4 and 3/4. For the coefficients of both 2D and 3D
simulations with laminar inflow, the first peak is smaller than the
second one due to the influence of the separated vortex. As for the 3D
simulations with turbulent inflow, the distribution of fluctuating
pressure coefficients changes into a nearly symmetric pattern. The
simulated results in 3D domain with turbulent inflow coincide with the
reference set of results (Ding et al., 2014) which validates the pro-
posed numerical method.

4. Characteristics of wind pressure on roofs

4.1. Mean pressure coefficients

The distributions of mean pressure coefficients on the flat roof and the
curved roof with different excitation frequencies are shown in Fig. 9
together with experimental results (Ohkuma and Marukawa, 1990; Ding
et al., 2014). The flow pattern of the flat roof in Fig. 10 shows that the
flow separates at the leading edge of the flat roof, and it reattaches near
the middle part of the roof. A separation bubble appears between the
separation and reattachment points. The mean pressure coefficient rea-
ches its biggest negative value near the separation point, and then
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Fig. 11. Mean streamline around curved roof with different vibration
frequencies.
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decreases to a relatively stable value behind the reattachment point
(Fig. 9(a)). With increasing vibration frequency, the separating position
does not change while the reattaching position moves towards the
leading edge. Meanwhile, the vortex intensity increases according to the
mean vorticity contours which are omitted here. Consequently, the peak
value of negative mean pressure coefficients increases and moves to-
wards the leading edge of the flat roof.

The distributions of mean pressure coefficients on the curved roof are
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quite different from those on the flat roof as shown in Fig. 9(b). The
negative mean pressure appears mainly due to the acceleration of flow
above the roof. The vortex sheds near the trailing edge with turbulent
inflow no matter the roof vibrates or not, as shown in Fig. 11. Meanwhile,
the size of vortex behind the vibrating roof remains the same as the static
one, resulting in similar mean wind pressure distributions with different
vibration frequencies.

4.2. Fluctuating pressure coefficients

The fluctuating pressure coefficients are shown in Fig. 12. The fluc-
tuating pressure coefficients on rigid roofs are small, which are mainly
caused by the turbulence of inflow and wake, while the coefficients on
vibrating roofs are induced by vibration as well, which increase with
excitation frequency. The distribution of fluctuating pressure coefficients
for high vibration frequencies are consistent with vibration mode. Large
coefficients appear at positions with large vibration amplitudes and vice
versa. Although the fluctuating pressure components of the inflow and
wake turbulence are different for roofs with different shapes, yet their
fluctuating pressure distributions are similar for the same vibration
mode.

The characteristics of the fluctuating wind pressure are further
studied similar to that for the mean wind pressure. The transient vorticity
around the roofs obtained from numerical simulation are shown in
Figs. 13 and 14, where φ donates the phase in a vibration cycle and the
vibration frequency is 50 Hz as an example. It is noted that the flow
separates at the leading edge of the flat roof, and the separated flow
contains vortices of different scales. The large scale vortex is further
separated into smaller ones along the downstream direction, and they
finally dissipate. These vortices in the front part of the flat roof is rela-
tively dense with high strength, so that the fluctuating wind pressure is
not exactly consistent with the vibration mode in this part. However, the
fluctuating wind pressure in the leeward part of the roof is mainly due to
the vibration of structure, so that its distribution and vibration mode are
consistent. For the curved roofs, the vortices fall off near the trailing edge
of the roof, which have less influence on the flow field above the roof.
The fluctuating wind pressure distribution coincides with the vibration
mode as a result.

4.3. Non-Gaussian characteristics of wind pressure

The wind pressures in engineering studies are usually assumed to be
Gaussian. This assumption is, however, not true for the vibrating struc-
tures where the wind pressures are generally non-Gaussian and large
peak pressures occur. These large peak pressures are often the main cause
of structural failures. The non-Gaussian characteristics of the surface
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(a) φ=0

(b) φ=π/2

(c) φ=π

(d) φ=3π/2

(e) φ=2π
Fig. 13. Transient vorticity contours around flat roof with different phases.

(a) φ=0

(b) φ=π/2

(c) φ=π

(d) φ=3π/2

(e) φ=2π

Fig. 14. Transient vorticity contours around curved roof with different phases.
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(a) Flat roof (fm=0Hz)

(b) Flat roof (fm=10Hz)

(c) Flat roof (fm=30Hz)

(d) Flat roof (fm=50Hz)

Fig. 15. PDFs of wind pressure coefficient of flat roof with different vibration
frequencies.

(a) Curved roof (fm=0Hz)

(b) Curved roof (fm=10Hz)

(c) Curved roof (fm=30Hz)

(d) Curved roof (fm=50Hz)

Fig. 16. PDFs of wind pressure coefficient of curved roof with different vibra-
tion frequencies.
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wind pressures on long-span roofs considering the vibrating effect are
studied in this section.

Skewness and kurtosis of the probability density function (PDF) are
generally used to describe the non-Gaussian characteristics of wind
pressure, which are defined as

Cpi;sk ¼ E

"�
CpiðtÞ � Cpi;mean

Cpi;rms

�3
#

(17)

Cpi;ku ¼ E

"�
CpiðtÞ � Cpi;mean

Cpi;rms

�4
#

(18)

where subscript i is the identifier of point on the roof; sk and ku stand for
skewness and kurtosis respectively; mean and rms stand for the mean and
standard deviation of variables. E denotes the expectation value.

Based on the numerical time history of wind pressures on flat and
curved roofs, their PDFs at points with maximum vibration amplitude (s/
Rs¼ 1/4, 3/4) and the roof center point (s/Rs¼ 1/2) are shown in
Figs. 15 and 16. The skewness and kurtosis of each measure point are
shown in the labels. A standard Gaussian distribution curve with null
mean and unit variance is also plotted for comparison.

The PDF of the fluctuating wind pressure on rigid roof is close to the
Gaussian distribution as shown in Fig. 15(a) and Fig. 16(a). For the
vibrating roofs, the PDF changes from single peak distribution to double
peak distribution with increasing excitation frequency (Fig. 15(b, c, d)
and 16(b, c, d)). The PDF with double peaks is similar to the PDF of the
excited sinusoidal displacement of the roof. This indicates that with
increasing vibration frequency, the correlation between the wind load on
roof and the roof displacement is strengthened. With increasing vibration
frequency, the skewness sk tends to be zero, same as the value of Gaussian
distribution. This may be due to the fact that the fluctuating pressure on
the vibrating roof mainly depends on vibration, and it fluctuates sym-
metrically and synchronously with vibration. However, the kurtosis ku
decreases gradually to 1.5 with increasing vibration frequency, which is
quite lower than the Gaussian value as 3.0. It should be mentioned that
when the PDF has one peak, its ku is always larger than the Gaussian
value of 3.0 if the peak of PDF is higher than the Gaussian one, as shown
in Fig. 15(a) and (b). However, this character cannot be found for the PDF
with two peaks. Similar results are shown in the research of Chen (2013).

The PDF function of curved roof changes to double peak distribution
at a lower excitation frequency than the flat roof. This may be due to the
fact that the effect of vibration is dominating only in higher vibration
frequency for flat roof, while the influence of separated flow on the
fluctuating wind pressure is smaller for the curved roof and the vibration
effect is more easily to dominate. The PDF of wind pressure shows
obvious non-Gaussian characteristics when the vibrating condition is
taken into account. Therefore, the peak value of wind pressure on flexible
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roofs could be estimated using non-Gaussian estimation methods, e.g. the
translation process method (Yang and Tian, 2015; Huang et al., 2016; Liu
et al., 2017).
4.4. Power spectral density of wind pressure

The fluctuating wind pressure spectrum is always used to measure the
contribution of fluctuating wind pressure components in different fre-
quency bands. For the rigid roof, the energy of fluctuating wind pressure
mainly comes from buffeting components, e.g. the components induced
by the turbulence of inflow and wake. However, the component of
vibration-induced force should be added upon the buffeting components
for the flexible roof, which is studied in this section.

The dimensionless wind pressure spectrum f⋅S (f)/σ 2 at a typical
position (s/Rs¼ 1/4) on the flat and curved roofs for different vibration
frequencies are shown in Fig. 17, where S (f) is the function of Power
Spectral Density (PSD) and σ2 is the variance of fluctuating wind pres-
sure. The spectra of buffeting components can be found on the rigid roofs
(fm¼ 0 Hz), which are relatively smooth, while the spectra on the
vibrating roofs include peaks corresponding to the excitation fre-
quencies. These peaks are quite larger than the spectral values on the
rigid roofs, and they roughly increase with the excitation frequency. This
proves that the vibration-induced components provides much more en-
ergy to the fluctuating pressure than the buffeting force components. The
increase of the spectral peak value with excitation frequency is due to the
increasing energy input from the roof vibration. That is why the fluctu-
ating pressure and its PDF primarily depend on vibration frequency, as
shown in Figs. 12, 15 and 16. The characteristics of wind pressure
spectrum obtained here are in agreement with experimental results
(Ohkuma and Marukawa, 1990).

5. Unsteady aerodynamic characteristics

5.1. Unsteady aerodynamic force coefficients

The wind load on the long-span roof changes significantly with vi-
bration as discussed above. The component of vibration induced wind
load is called the unsteady aerodynamic force or self-excited aero-elastic
force (Kareem and Gurley, 1996). This force is sometimes the controlling
factor on structural dynamic instability for flexible structures like
long-span roofs. In view of the complexity of the coupling between wind
and structure, a simplified dynamic equation for
multiple-degree-of-freedom system under fluctuating wind load has been
proposed (Katagiri et al., 2001) as

MS€zþ CS _zþ KSz ¼ FT ðtÞ þ FWðtÞ þ FAðt; z; _z; €zÞ (19)

The terms on the left-hand-side stand for structural inertia force,
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Fig. 18. Unsteady aerodynamic coefficients.
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damping force and stiffness force respectively. The terms on the right-
hand-side are forces due to the turbulent inflow, the wake instability,
and the self-excited forces, denoted as FT, FW and FA respectively. It is
noted that the self-excited force FA is a function of time, displacement,
velocity and acceleration.

The self-excited force FA can be separated into two terms because of
the orthogonality of displacement and velocity. The force related with
displacement z and acceleration €z is called the in-phase aerodynamic
force A. The force related with velocity _z is called the out-of-phase
aerodynamic force A* and they are related as

FAðt; z; _z; €zÞ ¼ Aðt; z; €zÞ þ A*ðt; _zÞ (20)

If the structure vibrates in small amplitude, the in-phase and out-of-
phase aerodynamic forces may be assumed as linear functions of
displacement and its derivative. The two terms on the right-hand-side of
Eq. (20) can thus be expressed as

Aðt; z; €zÞ ¼ �Kaz (21)

A*ðt; _zÞ ¼ �Ca _z (22)

where Ka and Ca are the relation coefficients between unsteady aero-
dynamic force and the displacement and velocity respectively. Ka and Ca

are called the aerodynamic stiffness and damping respectively as they
lead to a change in the equivalent stiffness and damping of the system.
Thus the dynamic equation of motion in Eq. (19) can be written as:

MS€zþ ðCS þ CaÞ _zþ ðKS þ KaÞz ¼ FTðtÞ þ FWðtÞ (23)

The discussions above are based on two assumptions: (a) The influ-
ence of vibration on the buffeting force is ignored; and (b) the harmonic
components of unsteady aerodynamic force apart from that at the vi-
bration frequency are ignored. These approximations are acceptable in
engineering practices. Another point worth mentioning is that since the
displacement z and the acceleration €z share the same phase, the aero-
dynamic stiffness and mass effects cannot be separated in this method.

The in-phase aerodynamic coefficient of the hanging roof is generally
described as the aerodynamic mass, and the aerodynamic stiffness is
generally referred to that for the closed roof (Yang et al., 2010). The fluid
and structure can be treated as parts of the same system using this
simplified dynamic equation, and the influence of unsteady aerodynamic
force is equivalent to that due to a change of system dynamic parameters.
Once the unsteady aerodynamic terms have been determined, the
interaction effect between wind and structure can be solved as a general
stochastic vibration problem utilizing existing random vibration theories.

Non-dimensional unsteady aerodynamic force coefficients are always
used to represent the characteristics of unsteady aerodynamic force and
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to calculate the dynamic response in the frequency domain. The aero-
dynamic stiffness coefficient aK and aerodynamic damping coefficient aC
are defined by Eqs. (24) and (25) (Daw and Davenport, 1989) as

aK ¼ � 1
z0=L

2
T

Z T

0

FðtÞ
qHAs

zðtÞ
z0

dt (24)

aC ¼ � 1
z0=L

2
T

Z T

0

FðtÞ
qHAs

_zðtÞ
_z0
dt (25)

where As is the area of roof; T is the period of forced vibration and FðtÞ is
the generalized wind force. It is worth noting that the signs of the un-
steady aerodynamic coefficients defined in Eqs. (24) and (25) are same
with the aerodynamic stiffness and damping, which is consistent with the
definition in Daw and Davenport (1989) but opposite the ones in
Ohkuma and Marukawa (1990), Kawai et al. (1999) and Ding et al.
(2014).

The aerodynamic stiffness and damping coefficients are obtained
using the wind pressure time history at all points on the roof. Numerical
results of the flat roof and curved roof are compared with experimental
results (Ohkuma and Marukawa, 1990; Ding et al., 2014), as shown in
Fig. 18. In this range of frequencies the aerodynamic stiffness coefficient
is negative and the aerodynamic damping coefficient is positive. Both of
the values increase in magnitude with the reduced frequency. It can be
seen that the unsteady aerodynamic coefficients of different roof shapes
almost coincide, indicating that the unsteady aerodynamic coefficients
mainly depend on the reduced vibration frequency in this range of fre-
quency and amplitude, and they are independent with the shape of roof.
It should be mentioned that the sign of aK and aC is changed when the
previous results (Ohkuma and Marukawa, 1990; Ding et al., 2014) are
plotted in Fig. 18 together with the present results.

Since the aerodynamic stiffness and damping coefficients mainly
depend on the reduced frequency, they can be curve-fitted as functions of
the reduced frequency as shown in Fig. 18. The fitted formulas are

ak ¼ �460f * ¼ �460�
�
fH
U

�2

(26)

ac ¼ 100f *2 ¼ 100�
�
fH
U

�2

(27)

where f * ¼ fH=U is the reduced frequency. It should be noticed that the
unsteady aerodynamic coefficients may also be influenced by the vibra-
tion amplitude for large amplitude cases. However, they are independent
of amplitude when x0/H� 0.1 as shown in the experimental results
(Ohkuma and Marukawa, 1990).
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5.2. Prediction of dynamic response

The dynamic responses of long-span roofs under the effects of un-
steady aerodynamic forces are studied in this section. The dynamic
response of the structure is calculated using the generalized force spec-
trum and the mechanical admittance function, i.e. the transfer function
between the wind pressure spectrum and the dynamic response spec-
trum, as shown in Eqs. (28) and (29) (Daw and Davenport, 1989):

σ2
x ¼

1
K2

s

Z ∞

0
SFðf ÞjHðf Þj2df (28)
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jHðf Þj2 ¼ 1h
1�

�
f
fs

	2
þ Kaðf Þ

Ks

i2
þ 4ðζs þ ζaðf ÞÞ2

�
f
fs

	2 (29)

where, σ2x is the variance of the dynamic response. K and ζ denote the
stiffness and damping respectively. SFðf Þ is the spectrum of generalized
force. Hðf Þ is the mechanical admittance, which is a function of fre-
quency ratio, stiffness ratio and damping ratio. The subscripts a and s
refer to aerodynamic coefficients and structural coefficients respectively.
The stiffness ratio and damping ratio can be obtained from the unsteady
aerodynamic coefficients as
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L
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where the unsteady aerodynamic coefficients aK and aC are obtained by
Eqs. (26) and (27).

The influence of unsteady aerodynamic forces on the dynamic
response of a real-scale structure is studied here. The span and height of
the long-span flexible roof are assumed to be 100m and 20m respec-
tively. Its natural frequency fs, damping ratio ζ and density ρ have the
ranges of 0.5 Hz–1.5 Hz, 3%–11% and 6 kg/m2 to 10 kg/m2 respectively.
To investigate the influence of each structural parameters, control vari-
able method is used. In the baseline model, fs is set as 0.5 Hz, ζ as 3% and
ρ as 6 kg/m2. For each case only one parameter changes and the others
are kept as constants as the baseline model. The structural dynamic re-
sponses obtained are discussed below.

Firstly, the effects of roof parameters on stiffness ratios and damping
ratios are obtained as shown in Figs. 19 and 20. It can be seen that the
aerodynamic stiffness ratio is negative and decrease with the reduced
frequency, resulting in a reduction of total stiffness. Meanwhile the
aerodynamic damping ratio will increase the total damping. When the
natural frequency or material density of roof increases, both of the effects
of aerodynamic stiffness and damping are reduced.

The mechanical admittance function of the system can be calculated
based on the results of the stiffness and damping ratio, as shown in
Fig. 21. It is noted that the peak of mechanical admittance function re-
mains relatively constant with increasing structural natural frequency,
while the normalized frequency at the peak value increases significantly.
With increasing damping of the structure, the peak of mechanical
admittance decreases while the peak position remains unchanged. In
addition, the peak of function reduces slightly when the mass of roof
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increases, and the normalized frequency at the peak value increases
slightly at the same time.

The spectrum of generalized wind load on the roof from numerical
simulation is shown in Fig. 22. According to the wind load spectrum and
the curves of mechanical admittance, the variance of generalized dis-
placements can be calculated, and the results with and without consid-
ering unsteady aerodynamic coefficient are compared, as shown in
Fig. 23.

The dynamic response is noted under-estimated without considering
the unsteady aerodynamic force on the roof with smaller stiffness
(fs¼ 0.5 Hz) as shown in Fig. 23(a). For the more rigid roofs, e.g.
fs> 0.75 Hz, the dynamic responses are similar no matter unsteady
aerodynamic forces are considered or not, which means the unsteady
aerodynamic effect can be ignored for rigid roofs. Then the effect of roof
damping ratio and density are tested base on the flexible roof
(fs¼ 0.5 Hz). The results in Fig. 23(b) and (c) show that when the
structural damping or density becomes larger, the dynamic response of
the flexible roof is always under-estimated without considering unsteady
aerodynamic forces, which indicates stiffness rather than damping or
mass plays a more important role in this case.

6. Conclusions

Long-span roofs with different shapes under forced excitation are
simulated based on the LES turbulence model. The wind pressure and
unsteady aerodynamic force coefficients are predicted, and their char-
acteristics are investigated based on numerical flow patterns. The dy-
namic response is evaluated with consideration of the unsteady
aerodynamic forces. The following main conclusions are drawn:

(1) The mean wind pressure coefficients mainly depend on the posi-
tion of flow separation and vortex shedding, and therefore the
difference is obvious for different shapes of roofs. The vibration of
structure, however, has little effect on the mean wind pressure.
The fluctuating pressure contains not only the components of
inflow and wake effects but also the roof vibration-induced
component, which becomes dominant when the roof vibrates at
higher excitation frequency. The distribution of fluctuating pres-
sure coefficient at higher vibration frequency depends on the vi-
bration mode as a result. The maximum value of the fluctuating
pressure coefficient increases with vibration frequency. The
symmetric distribution of fluctuating pressure coefficients is
influenced by the position of flow separation and vortex shedding.
It is only symmetric when the vortices shed near the trailing edge
of roof.

(2) The PDF of the fluctuating wind pressure from the vibrating roof
shows non-Gaussian characteristics. It changes from single peak
distribution to double peak distribution with an increase of the
excitation frequency, indicating a strengthening of the correlation
s
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between the wind load and the vibration displacement. The PSDs
of the fluctuating wind pressure exhibit peaks corresponding to
the vibration frequencies, indicating vibration is the main source
of energy of the fluctuating wind pressure on the roof.

(3) The unsteady aerodynamic coefficients mainly depend on the
reduced vibration frequency, and they are insensitive to the roof
shape. The unsteady aerodynamic effect lead to a decrease of total
stiffness and an increase of total damping of the structure. The
dynamic response of structures will be under-estimated without
considering the unsteady aerodynamic forces, especially for flex-
ible structures. Stiffness rather than damping or mass plays a more
important role in this case.

It is noted that the results presented in this paper are preliminary
based on the first asymmetric vibration mode of the structure. Multiple
vibration modes should be considered for real structures and more sim-
ulations are needed to study the behavior with higher vibration modes.
The predicted dynamic responses should be compared with results from
aero-elastic experiments in the further study.
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