非線形 FEM 解析に基づく風車無筋ペデスタルの耐力評価式の提案

Design formulae on concrete capacity of wind turbines pedestal based on the non-linear FEM analysis

佐野健彦*, 石原孟** Takehiko Sano, Takeshi Ishihara

*修士(工学), 日本国土開発株式会社, 東京本店土木技術部(〒107-8467 東京都港区赤坂 4-9-9) takehiko.sano@n-kokudo.co.jp

**博士(工学), 東京大学大学院教授, 工学系研究科社会基盤学専攻(〒113-8656 東京都文京区本郷 7-3-1)

The concrete capacities of wind turbine pedestals are investigated by using the non-linear FEM analysis. It is found that the type of failure mode of concrete pedestal is due to bending moment. The design formulae are proposed to consider the effects of compressive strength of concrete, embedded depth of the anchor bolt and pedestal size.

Key Words: Wind turbine pedestals, design formulae on concrete capacity, non-linear FEM analysis

キーワード:風車ペデスタル,コンクリート耐力評価式,非線形FEM 解析

1. はじめに

我が国における風力発電の設備容量は、2011年度末時 点で255.6万kWに達し,風車設置数も1870基を超えて いる¹⁾.風力発電設備支持物は、ペデスタルを介して鋼 製タワーとコンクリート基礎が鋼製アンカーボルトまた はアンカーリングによって、異種材料の継手構造として 接続されているため、応力状態が複雑である. また、風 力発電設備支持物の構造形式は、一般的には片持ち梁構 造であり、発電機をタワー頂部に有するトップヘビーと いう特徴的な支持構造であることから、強風や地震が作 用した際には、鋼製タワーとペデスタルに大きな荷重が 作用する. これまでに、日本特有の自然環境および地形 条件に起因する強風により、風力発電設備支持物の基礎 が崩壊するといった重大事故が報告 2)~6)されている.図 -1⁷は,終局耐力を超える曲げモーメントが作用し,コ ンクリート基礎接合部がコーン破壊を起こしてアンカー ボルト並びにアンカープレートごとペデスタルから抜け 出し、タワーが倒壊した事故例である. このため、アン カーボルトの引抜き耐力を適切に評価することが安全性 確保のために非常に重要である.

風力発電設備基礎接合部アンカーボルトの抜け出しに 対する耐力評価法は、風車の国際基準である IEC61400 には基礎の設計方法としての規定がない.現在、タワー および基礎の設計要件 IEC61400-6 として策定中である. Building Code Requirements for Structural Concrete (ACI 318M-02)の Appendix D⁸⁾(以下, ACI 指針)には、コンクリ ートの設計基準強度の平方根と、コーン状破壊面角度を 35°と仮定した四角錐状破壊面の有効水平投影面積の積 で表わす評価式が示されているが、Morgan⁹らは、ACI 指針 ⁸に示された,アンカーボルトの引抜きに対する評 価法は、埋込み深さの適用範囲が、27.9cm~63.5cm であ るため、風力発電設備支持物の基礎のように規模の大き いアンカーは適用範囲外であることを指摘している. さ らに、ACI指針⁸⁾は、1本のアンカーボルトの引抜きを想 定した評価式であることから、円周上に配置された複数 本のアンカーボルトによって構成されている風力発電設 備基礎接合部には適用出来ない点も指摘している. 国内 においては、無筋コンクリートに対するコーン状破壊強 度の平均値がコンクリートの設計基準強度の平方根と, コーン状破壊面角度を 45°と仮定した円錐状の破壊面の 有効水平投影面積の積で表す方法が各種合成構造設計指 針(日本建築学会)10(以下,各種合成構造指針)に示されて いるが、数 10cm オーダーといった小規模なアンカーを 対象としているため、数mオーダーといった大規模な風 力発電設備基礎接合部には適用出来ない.

一方,大規模なものに対する既往の研究では,保田ら ¹¹⁾が吊橋等の主塔基部正方形基礎のアンカー構造物を対 象に耐力に及ぼす影響としてアンカーボルトの埋込み深 さや寸法比を変えた実験を行い,曲げ耐力の評価式を

図-1 接合部コーン破壊の例⁷⁾

図-2 支配パラメータの定義

提案しているが、風力発電設備基礎接合部は、タワーと 共に一般的に円形あるいはそれに近い多角形の鉄筋コン クリート構造物であることより、基礎内の応力分布が矩 形配置と円形配置では異なるため、そのまま風力発電設 備基礎接合部の耐力評価式として適用することは出来な い. 風力発電設備支持物構造設計指針・同解説 [2007 年 版]⁷(以下, JSCE 風車指針)では風車倒壊事故調査の際 に行った FEM 解析の結果¹²⁾に基づき,アンカー材の引 抜きに対する耐力式が提案された. JSCE 風車指針では, 図-2 に示す接合部の形状を表すパラメータとして、コ ンクリートのコーン状破壊面の有効水平投影長さにおけ る、アンカーボルトの外側長さaと内側長さbとの比を 考慮した, 接合部の寸法に関する補正係数 a/b を提案し ていた.しかし、引抜きに対するコンクリート分担力は 寸法比 a/d(コーン状破壊面角度を 45°と仮定したため b=d)のほか,埋込み深さ比 r/d に依存するため,寸法比 に関する補正係数と埋込み深さ比に関する補正係数の両 者を考慮する必要がある.石原らによる最近の研究¹³か らも風力発電設備基礎接合部の引抜き耐力はアンカーボ ルトの埋込み深さ比 r/d による影響、ペデスタルの寸法 比 a/d による影響,コンクリートの圧縮強度 F_cによる影響の3パラメータの影響を受けることが明らかにされているが,耐力評価式は示されていない.

JSCE 風車指針の評価式の有用性は幾つかの代表的な 風力発電設備基礎を対象とした模型実験^{14,15}および FEM¹⁶により実証され,現在風車ペデスタルの設計に用 いられているが,限られた FEM 解析の結果に基づいて 提案された式であることから,今後さらなる大型化が予 想される風車では適用出来ない可能性がある.

以上のことを踏まえ、本研究では、風車ペデスタルの 耐力を支配するパラメータのうちペデスタルの強度特性 に影響を及ぼすアンカーボルトの埋込み深さ比 r/d によ る影響、ペデスタルの寸法比 a/d による影響、コンクリ ートの圧縮強度 F_cによる影響の3パラメータに着目し、 各パラメータを系統的に変化させた FEM 解析により、 風車ペデスタルの破壊メカニズムを明らかにするととも に無筋ペデスタルの耐力評価式を提案するものである.

2. 風力発電設備基礎接合部 FEM 解析の概要

本研究では、東京大学コンクリート研究室によって開発された鉄筋コンクリート構造物の3次元 FEM 解析コード COM3^{17,18)}を用い、モデル化に際しては、文献^{13,16)} による方法を踏襲し、変位増分法により解析を行った. 要素は3次元8節点ソリッド要素を用いてモデル化した. 求解法は、修正 Newton-Raphson 法を用い残差力が収束判 定基準を満たすまで繰返し計算を行った.

2.1 材料構成則

本研究では、岡村・前川らによって提案されている構成則^{17,18)}を用いた. コンクリートの圧縮領域には、式(1) に示す1軸圧縮モデルに基づく弾塑性破壊型のモデルを 適用した.

$$\sigma' = \omega K_0 E_0 \left(\varepsilon' - \varepsilon'_p \right) \tag{1}$$

 $K_{0} = \exp\left\{-0.73\varepsilon_{\max}'\left(1 - \exp\left(-1.25\varepsilon_{\max}'\right)\right)\right\}$ $\varepsilon_{p}' = \varepsilon_{\max}' - \frac{20}{7}\left\{1 - \exp\left(-0.35\varepsilon_{\max}'\right)\right\}$

ここで、 σ' は圧縮強度で正規化した応力、 ω はひび割れ 低減係数、 K_0 は弾性剛性残存率、 E_0 は定数であって、 本研究では 2.0 を用いた. ϵ' は圧縮強度に対応したピー クひずみで正規化したひずみ、 ϵ'_p はピークひずみで正 規化した塑性ひずみ、 ϵ'_max はピークひずみで正規化した 経験最大ひずみである. コンクリートの引張領域には、 ひび割れ直交方向の平均応力-平均ひずみ関係を式(2) で表す指数関数で表現したモデルとした. 圧縮載荷履歴 の影響については引張強度低減係数($R_r = K_3$)を用いた.

$$\sigma = R_f f_t \left(\varepsilon_{tu} / \varepsilon \right)^c \tag{2}$$

圧縮強度	引張強度	弹性係数	ポアソン比		
F_c (N/mm ²)	f_t (N/mm ²)	E_c (N/mm ²)	ν		
18	1.580	22000			
24	1.914	25000			
30	2.221	28000	0.17		
40	2.690	31000			
50	3.122	33000			

表-1 風力発電設備基礎部のコンクリート物性値¹⁹⁾

表-2 境界接合要素の物性値

	圧縮剛性(N/mm ²)	引張剛性(N/mm ²)	せん断剛性(N/mm ²)		
BOND 要素	100000	0.01	10700		

	衣一3 ノンカーホルトの諸元					
		本数	径(mm)	弹性係数(N/mm²)	降伏強度(N/mm²)	有効面積(mm²)
アンカーボルト		2×64	36	200000	900	816.7

11 1 0 = # -

ここで、 σ は引張応力、 R_f は引張強度低減係数、 f_i はコ ンクリートの引張強度であり、表-1 に示す圧縮強度に 対応した入力物性値を用いた。各圧縮強度に対応する物 性値は土木学会コンクリート標準示方書¹⁹に従って定め た、コンクリートの引張強度 f_i は式(3)により算出した。

$$f_t = 0.23 F_c^{2/3} \tag{3}$$

ここで、 F_c はコンクリートの圧縮強度である. ε_{ul} はひ び割れ発生ひずみ、 ε は引張ひずみ、cは付着性状を表 す定数であり、本研究では、0.4 を用いた. 無筋領域やひ び割れと鉄筋の方向が平行に近い場合には、破壊力学的 見地に基づき、式(2)および式(4)に基づいて、破壊エネル ギーと要素寸法から求める.

$$\int_{\varepsilon_{tu}}^{\varepsilon_{te}} \sigma d\varepsilon + \frac{1}{4} f_t \varepsilon_{tu} = \frac{G_f}{l} \tag{4}$$

ここで、 ε_{te} は終局引張ひずみ、 G_f は破壊エネルギー、1は

(b) アンカーボルトの詳細図

要素寸法である.ひび割れ面でのせん断挙動には,接触 面伝達密度関数に基づくせん断伝達モデルを採用した. ひび割れ面での応力伝達モデルは,式(5)を用いた.

$$\tau_{st} = f_{st} \frac{\beta^2}{1+\beta^2} \tag{5}$$

ここで、 τ_{st} はせん断応力、 f_{st} は終局せん断伝達強度 (=3.83 $f_c^{1/3}$)、 β はひび割れ面におけるせん断ひずみと開 口ひずみの比である.ただし、本研究は無筋ペデスタル を対象としているため式(2)は用いていない.

2.2 モデル化

FEM モデルは、地盤による影響は少ないと判断しフー チングはモデル化せず、ペデスタル部および鋼製タワー をモデル化の対象とした.一般的にフーチングは、剛体 判定によって剛であると考え、地盤が良い場合は直接基 礎, 軟弱地盤の場合は杭基礎による支持構造とする. ま た、ペデスタルはフーチングと比較すると規模が非常に 小さく相対変形量は小さいと判断出来るため、ペデスタ ルとフーチングは一体であると見なせることから地盤の 変形がペデスタルに及ぼす影響は非常に小さいと考えた ためである. コンクリート部分は、無筋コンクリート要 素, タワーおよびベースプレートおよびアンカープレー ト部分は,弾性要素でモデル化し,応力伝達機構のモデ ル化としてタワー脚部から伝達される引張力が、アンカ ーボルトを介し直接アンカーボルトに伝達されるように, アンカーボルトは軸力のみを伝達する線材要素とし材料 構成則はバイリニアでモデル化し、 ベースプレートとア ンカープレートの端部のみで結合させた.本研究では, アンカーボルトの埋込み深さ比 r/d による影響、ペデス タルの寸法比 a/d による影響, コンクリートの圧縮強度 F。による影響の3パラメータに着目しているため、アン カーボルトの初期張力は与えていない. 円筒状構造物で ある風力発電設備支持物の対称性を考慮して、1/2 断面 モデルを採用した.要素分割については、図-4(a)に示 すペデスタルの形状を円形として円周方向に16分割,鉛 直方向に13分割とした.アンカーボルトおよび境界接合 要素は、図-4(b)に示すようにモデル化を行った.モデ ル化にあたり、実際の風車を想定して同じ面積になるよ う表-3に示す本数とした. ベースプレートとペデスタル の境界には、材料の不連続性を再現出来る境界接合要素 を配置し、圧縮応力が作用した時にはタワー脚部からペ デスタルに直接圧縮力が伝達され、引張応力が作用した 時にはベースプレートとペデスタルが離隔するモデルと した. アンカーボルトと風力発電設備基礎ペデスタルに はアンカーボルトのアンボンドを模擬するために用いた 境界接合要素の物性値およびアンカーボルトの諸元を表 -2および表-3に示す.ここで,境界部接合要素の物性 値は既往の研究¹³⁾を参考に定めた.アンカープレート幅 は、すべての解析ケースにおいて 310mm 一定とした.

境界条件の設定は、図-4(c)に示すように 1/2 対称断面モ デルの対称条件を考慮して、モデル底部(ペデスタル下 端)については、x、y、z 方向の変位を拘束する完全固定 境界、モデル側部(ペデスタル側部)については、y 方向の 変位のみを拘束したローラ支承とした.初期応力状態を 再現するため構造系全体に対して重力による自重解析を 実施した後に、タワー頂部(高さ 66m)に変位制御による 単調載荷 3.0mm/step (強制変位量一定)を行い基礎に対し て転倒モーメントを与えた.タワー脚部に作用する転倒 モーメント Mは、タワー頂部の反力にタワーの高さを乗 じて得られたモーメントとして、式(6)によって算出した. M=H×R (6)

ここで,*H*はタワーの高さ(m),*R*はタワー頂部における 水平方向の反力(kN)である.

3. 風力発電設備基礎接合部 FEM 解析の結果

本章では、FEM 解析結果に基づき支配パラメータの抽 出と接合部引抜き耐力の性状について示す. FEM 解析モ デルおよび FEM コードとその結果は、実験との比較を 行いその妥当性はすでに確認されている^{14,15,16}.

3.1 支配パラメータの抽出

解析モデルは、ペデスタルの強度特性に影響を及ぼす アンカーボルトの埋込み深さ比 r/d による影響, ペデス タルの寸法比 a/d による影響,コンクリートの圧縮強度 Fcによる影響の3パラメータを着目要因として3タイプ のモデルに分類した. その着目要因と諸元の組み合わせ を表-4に示す. JSCE 風車指針⁷に示されているペデス タル耐力評価式は埋込み深さが、1150≤d≤1260mmの範 囲において FEM 解析を行った結果に基づいて提案され た式であるとともにアンカーボルトの埋込み深さ比 r/d による影響を考慮した式とはなっていない.本研究では、 アンカーボルトの埋込み深さ比 r/d による影響を考慮し た評価式を提案するため、アンカーボルトの埋込み深さ d=1150mm, 1260mm を解析モデルの対象とした. また, 最近の風車は大型化の傾向にあることを考慮し、アンカ ーボルトの埋込み深さdがより深い2000mmを加えた解 析モデル計3種類を対象にした. ここでアンカーボルト の埋込み深さだけによる分類では多くの形状のペデスタ ルの耐力性状を把握することは困難であるため、アンカ ーボルトの埋込み深さ dを基準として、ペデスタルの寸 法 a およびタワー半径 r を系統的に変化させ、埋込み深 さ d に 関して 無次元化した.着目要因は アンカーボルト の埋込み深さ比によりタイプ1~3の3分類に大別される. タイプ3はアンカーボルトの埋込み深さが比較的に浅い モデルであり、大型風車をモデル化したものである.次 に、それぞれの埋込み深さに対するペデスタルの寸法比 a/d の影響については、タイプ1およびタイプ2に関し ては3分類とし, a/d が大きくなるとペデスタル外側コ

表-4 ペデスタルの着目要因および諸元表

ンクリートの拘束力が耐力に及ぼす影響について考慮したモデルである.また、ペデスタルの寸法比 a/d の取り得る範囲については a/d ≤0.3 の解析ケースについても検討を行ったが、実構造物における存在可能性が低いことから本研究では検討範囲として 0.33 ≤ a/d ≤1.0 とした. コンクリートの圧縮強度が耐力に及ぼす影響については、コンクリートの圧縮強度に比例ⁿすることが示されている.本研究では、代表ケースとして解析ケース 10~14(タ イプ1)に示される5ケースにおいてコンクリートの圧縮 強度を18~50N/mm²まで変化させてコンクリートの圧 縮強度が耐力に及ぼす影響について調べた.

3.2 接合部引抜き耐力性状

図-5~図-7は、表-5のケース No.12 を例としてペ デスタル部の主ひずみコンターと変形図を示している. 図中の解析 step 時の曲げモーメントー回転角の関係は、

		諸元組み合わせ			着目要因		解析結果	
ケース	カノー	タワー端部からペデス	アンカーボルトの	タワー中心	コンクリート	埋込み深さ	ペデスタルの寸法	最大曲げ
No.	217	タル端部までの距離	埋込み深さ	半径	の圧縮強度	による影響	比による影響	モーメント
		<i>a</i> (mm)	<i>d</i> (mm)	<i>r</i> (mm)	$F_c(\text{N/mm}^2)$	r/d	a/d	P_c (kN·m)
1		380	1150	1150	30	1.00	0.33	14657
2	22 33 4 55 77 3 タイプ1	410	1260	1260	18	1.00	0.33	11839
3		410	1260	1260	30	1.00	0.33	15294
4		410	1260	1260	40	1.00	0.33	18349
5		660	2000	2000	30	1.00	0.33	46063
6		690	1150	1150	30	1.00	0.60	19956
7		755	1260	1260	30	1.00	0.60	22851
8		1200	2000	2000	30	1.00	0.60	60095
9		1150	1150	1150	30	1.00	1.00	24702
10		1260	1260	1260	18	1.00	1.00	19753
11		1260	1260	1260	24	1.00	1.00	22941
12		1260	1260	1260	30	1.00	1.00	26190
13		1260	1260	1260	40	1.00	1.00	30415
14		1260	1260	1260	50	1.00	1.00	33654
15		2000	2000	2000	30	1.00	1.00	78436
16		380	1150	1770	30	1.54	0.33	34050
17		410	1260	1935	30	1.54	0.33	34822
18		690	1150	1770	30	1.54	0.60	43972
19		755	1260	1935	30	1.54	0.60	45414
20	タイプク	1150	1150	1770	30	1.54	1.00	49872
21	172	1260	1260	1935	18	1.54	1.00	40149
22		1260	1260	1935	24	1.54	1.00	47076
23		1260	1260	1935	30	1.54	1.00	52377
24		1260	1260	1935	40	1.54	1.00	61755
25		1260	1260	1935	50	1.54	1.00	68884
26		380	1150	2300	30	2.00	0.33	60590
27		410	1260	2520	18	2.00	0.33	43737
28	タイプス	410	1260	2520	30	2.00	0.33	63148
29		410	1260	2520	40	2.00	0.33	71542
30	////	1150	1150	2300	30	2.00	1.00	81486
31		1260	1260	2520	18	2.00	1.00	65604
32		1260	1260	2520	30	2.00	1.00	89461
33		1260	1260	2520	40	2.00	1.00	101802

表-5 無筋ペデスタル接合部を対象とした FEM 解析結果

※ 最大曲げモーメントの値はピーク時の荷重を示す.

図-8(a)に示すように、29stepは、曲げモーメントの最大 値を示している.各解析ケースともアンカープレート近 傍から水平方向に近い輪切り状のひび割れが生じ、急激 な破壊に至った.アンカープレート同高位置で、1/2 対 称面近傍におけるコンクリートひずみ挙動を追跡すると、 載荷に伴って引張側アンカープレート近傍のコンクリー トから水平方向に徐々にひび割れが伝達され、ひび割れ が引張側コンクリートの外縁に到達した後に耐力低下に 至る.それ以降は円周状に配置されたアンカープレート に沿って応力の再配分を行って、中立軸を移動しながら 外力に抵抗している. 表-5 にタイプ毎に分類した 33 ケ ースの FEM 解析結果を示し,抽出した各パラメータが 無筋ペデスタルの最大耐力に及ぼす影響について示す. 図-8(a)は,表-5 における解析ケース 10~14(タイプ 1) に示される 5 ケースについて,タワー端部からペデスタ ル端部までの距離 a=1260mm,アンカーボルトの埋込み 深さ d=1260mm,タワー中心半径 r=1260mm を同一とし, コンクリートの圧縮強度を 18~50N/mm² として系統的 に変化させ、コンクリートの圧縮強度が無筋ペデスタル の最大耐力に及ぼす影響について示したものである.

図-8(a)の横軸は回転角を示しており、グラフの縦軸は 作用曲げモーメント(kN·m)を示している. 圧縮強度が大 きいほど無筋ペデスタルの耐力も大きくなり最大耐力を 示した後は急激に脆性的な破壊モードに移行するといっ た挙動を示した.また、最大耐力までの挙動はほぼ同一 線上に推移しコンクリートの圧縮強度が高いペデスタル ほど最大耐力も高い結果を示した. これらの結果から無 筋ペデスタルの耐力は圧縮強度に比例する関係があるこ とが予想出来る.図-8(b)は、表-5における解析ケース 17, 19, 23(タイプ2)に示される3ケースについて、アン カーボルトの埋込み深さ d=1260mm, タワー中心半径 r=1935mm は同一とし、タワー端部からペデスタル端部 までの距離を a=410mm, 755mm, 1260mm とした結果で ある. 図-8(b)の横軸は回転角を示しており、グラフの 縦軸は作用曲げモーメント(kN·m)を示している. 解析ケ ース 17(a=410mm)は、最大曲げモーメントが 34822kN・ m であるのに対して、解析ケース 23(a=1260mm)は、最 大曲げモーメントが 52377kN·m である. このことから, タワー端部からペデスタル端部までの距離が大きい方が 最大耐力も高くなることが示された. 図-8(c)は、ペデ スタルの埋込み深さの影響について示した図である. JSCE 風車指針⁷⁾では、このパラメータに関する考察およ び提案はされていない. ここでは埋込み深さ比による評 価とし、寸法比 a/d=1.0 の一定値とした. 表-5 における 解析ケース 12, 22, 32(タイプ 1~3)に示される 3 ケース について、タワー端部からペデスタル端部までの距離 a=1260mm, アンカーボルトの埋込み深さ d=1260mm を 同一とし、タワー中心半径を r=1260mm, 1935mm, 2520mm とした結果である. 図-8(c)の横軸は回転角を示 しており、グラフの縦軸は作用曲げモーメント(kN·m) を示している. 解析ケース 12(r/d=1.0)は、最大曲げモー メントが 26190kN・m であるのに対して, 解析ケース 32(r/d=2.0)は、最大曲げモーメントが89461kN・mである. 解析ケース 32 は、解析ケース 12 に対して、相対的にア ンカーボルトの埋込み深さが浅いことを示している. 埋 込み深さが相対的に浅い風車基礎であっても, 風車タワ 一の径が大きくなると断面係数が大きくなり,結果とし て最大曲げモーメントは大きい値になったと考える.

4. 風力発電設備基礎接合部耐力評価式の提案

ペデスタルの形状と風力発電設備基礎耐力との関係に ついて考察する.アンカーボルト引抜き破壊の場合,柱 や梁のように外力が外から加わる構造物とは異なり,タ ワー頂部に作用した外力はアンカープレートを通じてペ デスタル内部から作用する.従って,アンカープレート の位置を含めた風力発電設備基礎の形状による耐力への 影響について検討する必要がある.無筋ペデスタルの最 大耐力は,コンクリートの圧縮強度,ペデスタルの寸法 比による影響,埋込み深さによる影響等の多くの因子を

有しており、それぞれがペデスタルの耐力を支配するパ ラメータであることを前章の解析結果により示した.無 筋ペデスタルの耐力は前章で述べた各パラメータについ て式(7)に示す一次結合で与えられると仮定した.

$$P_c = C_c \beta_{ad} \beta_{rd} \beta_d \beta_n \times F_c^{\alpha} D_c \quad , D_c = a + b \qquad (7)$$

ここで、 P_c はアンカーボルトの抜け出しに対するコンク リートの分担力(N/mm)であり、 C_c は比例係数、 β_{ad} は寸 法比 a/d を考慮するための補正係数($0.33 \le a/d \le 1.0$)、 β_{nd} はアンカーボルトの埋込み深さ比 r/d を考慮するための 補正係数($1.0 \le r/d \le 2.0$)による影響、 β_d はペデスタルの 寸法効果による補正係数、 β_n はアンカーボルトの初期軸 力による補正係数、 F_c^a はコンクリートの圧縮強度 (N/mm²)に関する補正係数、 D_c は、コンクリートのコー ン状破壊面の有効水平投影長さ(mm)で図-2 に示した関 係による.

(1) 寸法効果および初期軸力に関する補正係数

JSCE 風車指針⁷⁾では、コンクリート標準示方書¹⁹⁾の 考え方を反映した寸法効果に関する補正係数 β_d として、 アンカーボルトの埋込み深さの-1/4 乗に比例するとし ている. 無筋コンクリートの場合には, 極限として, 線 形破壊力学の理論値である、アンカーボルトの埋込み深 さの-1/2 乗の曲線に漸近することが既往の載荷実験¹¹⁾ 等に示されている. この寸法効果に関しては、部材の有 効高さが 1m を超える構造物に対しても適用出来ること を示している. さらに破壊力学的アプローチによる考察 としては, Bazant ら²⁰⁾はコンクリートの引張強度は部材 有効高さ d と最大骨材寸法 daの比に依存し、その寸法効 果は d /da が小さい範囲では引張強度は非線形破壊力学 による破壊基準に従いdの3~4乗根に反比例する効果が 現れるが、十分大きい範囲では引張り強度は線形破壊力 学による破壊基準に近づき d の平方根に反比例する寸法 効果が現れるとしている.本研究では、線形破壊力学の 理論値を採用し(8)式とした.

$$\beta_d = \sqrt{1/d} \qquad (\beta_d \le 1.5) \tag{8}$$

ここで、d はアンカーボルトの埋込み深さ(m)である. JSCE 風車指針ⁿでは、引抜き耐力に影響を与える要素として、コンクリート分担力の比 β_n と初期軸力の影響を式(9)で与えている.

$$\beta_n = 1 - \frac{1}{2}\sigma_n / f_n \quad (0 \le \sigma_n / f_n \le 0.4) \tag{9}$$

ここで、 σ_n はアンカーボルトの並ぶ円周単位長さ当た りの初期軸力(N/mm)、 f_n は円周単位長さ当たりの支圧力 (N/mm)を示す、 σ_n/f_n が1の場合は、初期軸力により支 圧破壊している、過度な支圧力が作用するのは設計上望 ましくないとした上で適用範囲を式(9)としている、本研 究では、初期軸力は考慮していないため、 β_n =1.0 とした. (2) コンクリートの圧縮強度に関する補正係数

図-9は、表-5に示した33ケースのFEM解析結果にお

けるそれぞれの最大曲げモーメントに対して、縦軸を圧縮強度F_c=30N/mm²のときの曲げ耐力で除したP_c(F_c=30, a/d, r/d)とし、横軸はコンクリートの圧縮強度の平方根としてプロットした図である.この図から、コンクリートの分担力はコンクリートの圧縮強度の平方根に比例することがわかる.コーン破壊に対する抵抗力はコンクリートの圧縮強度の平方根に比例し、ACI指針⁸⁰や、各種合成構造指針¹⁰⁾の結果と同じであることが示された.

(3) 寸法比に関する補正係数

図-10は、寸法比a/dが耐力に与える影響を示し、図中の実線はβ_{ad}の評価式を示している.図-10の縦軸は各解析結果 P_c(F_c=30, a/d, r/d)をF_c=30およびa/d=1.0の解析結果P_c(F_c=30, 1.0, r/d)で除した値である.無筋ペデスタルの寸法比a/dが大きくなるにつれて無筋ペデスタルの耐力が増大することがわかる.これは、コンクリートの水平方向の拘束力が増大することで、タワーの引抜き力への抵抗力が増大するためと考えられる. 接合部のコンクリート分担分は、接合部の寸法比によって変化することがわかる. a/dが極端に小さい場合には、水平ひび割れが発生すると、すぐに定着面の耐力が低下すると考えられる.

$$\beta_{ad} = -0.4 (a/d - 1.0)^2 + 1.0 \quad (0.33 \le a/d \le 1.0) \quad (10)$$

(4) 埋込み深さ比に関する補正係数

図-11は、埋込み深さが耐力に与える影響を示し、図中の実線は β_{rd} の評価式を示している。図-11の縦軸は各解析結果 P_c (*Fc* =30, *a/d*, *r/d*)を、*r/d*が等しく*a/d*=1.0の解析結果 P_c (*Fc* =30, 1.0, 1.0) で除した値である。*r/d*が大きくなると、 β_{rd} の値が急激に小さくなることがわかる。このことから、埋込み深さが浅い場合には、接合部のコンクリート分担力は小さいことがわかる。

$$\beta_{rd} = 0.5(r/d - 2.0)^2 + 0.5$$
 $(1.0 \le r/d \le 2.0)$ (11)

(5) 比例係数

図-12は、最大曲げモーメントに着目してペデスタルの最大耐力について FEM 解析結果と無筋ペデスタル耐

カ評価式の比較を示した図である.比例係数 $C_c=0.48$ は, FEM 解析結果より同定したものである.図中の縦軸は式 (12)の強度評価式によって算定した最大曲げモーメント を示し、横軸には表-5 に示した 33 ケースの FEM 解析 結果による解析結果値をプロットした.強度評価式は、 若干のばらつきはあるものの、FEM 解析結果をおおむね 再現していることがわかる.強度評価式は、 $18 \le F_c \le 50$ N/mm², 0.33 $\le a/d \le 1.00$, $1.00 \le r/d \le 2.00$ の範 囲内で導かれたものである.ただし、aの適用範囲はア ンカーの埋込み深さ d (m)を上限とする.以上を踏まえて、 式(7)を書きあらためると式(12)となる.

$$P_c = 0.48\beta_{ad}\beta_{rd}\beta_d\beta_n\sqrt{F_c}D_c \quad , D_c = a+b \quad (12)$$

5. まとめ

本研究では、ペデスタルの耐力を支配する重要な要因 であるペデスタルの寸法比 a/d, アンカー材の埋込み深 さ比 r/d, コンクリートの圧縮強度 F_cの影響に着目した FEM 解析の結果に基づき,設計に供するより合理的な引 抜き耐力に関する評価式を提案した.今回の検討範囲内 で得られた知見を以下にまとめる.

- 無筋ペデスタルを対象とした解析により、ペデスタルの 破壊メカニズムは引張側のアンカープレート近傍から進 展した水平方向の輪切り状のひび割れに伴って徐々に ひび割れが伝達され、ひび割れが引張側コンクリートの 外縁に到達した後に耐力低下に至ることが分かった。
- 2) ペデスタルの弾性耐力を支配するパラメータとして、ペ デスタルの寸法比 a/d、アンカー材の埋込み深さ比 r/d、 コンクリートの圧縮強度 F_cの影響に着目し、風力発電設 備基礎接合部の最大耐力はペデスタルの寸法の他、ア ンカー材の埋込み深さにも強く関係していることを明らか にした。

本研究では、風車無筋ペデスタルを対象とした、コン クリート寄与分に関する耐力評価式の提案を行ったが、 今後は、FEM モデルによる鉄筋の寄与分を考慮した引抜 き耐力評価式の提案を行っていく予定である.なお、「風 力発電設備支持物構造設計指針・同解説 2010 年版」の解 説に示されている図ならびに耐力評価式は本研究の成果 によるものである.

謝辞

本研究は「土木学会構造工学委員会風力発電設備の動 的解析と構造設計小委員会」の一環として実施された.関 係者に謝意を表する.

参考文献

- 経済産業省資源エネルギー庁:平成24年度 エネル ギーに関する年次報告,pp128-130,2013
- 2) (株)ユーラスエナジー岩屋:岩屋ウインドファーム発

電所 11A 号風車倒壞事故報告書, 2007

- 3) 石原孟,山口敦,藤野陽三:2003 年台風14 号による 風力発電設備の被害とシミュレーションによる強風 の推定,土木学会誌, Vol.88, pp.45-48, 2003.
- 4) NEDO 技術開発機構:平成 16 年度風力発電利用率向 上調査委員会及び故障・事故調査分科報告書, 2005.
- 5) 新エネルギー・産業技術総合開発機構:平成16年度 風力発電利用率向上調査委員会および故障・事故調査 分科会,報告書,2004
- 6)沖縄電力株式会社:台風14号による風力発電設備の 倒壊等事故調査報告書,2004
- 7) 土木学会:風力発電設備支持物構造設計指針・同解説
 [2007 年版],構造工学シリーズ 17,2007.11
- Building Code Requirements for Structural Concrete (ACI 318M-02) and Commentary (ACI 318RM-02)
- 9) Kirk Morgan, Eric Ntambakwa: Wind turbine Foundation Behavior and Design Considerations: AWEA WIND-POWER Conference, Houston, June 2008
- 10)日本建築学会: 各種合成構造設計指針・同解説, 2010
- 11)保田雅彦,平原信幸,佐々木正敏,岩城良:吊橋等 の主塔基部アンカー構造の耐力評価法に関する実験 的研究,土木学会論文集,No.460,V-18,pp.23-32,1993
- 12)松尾豊史,金津努,高原景滋,銘苅壮宏:台風14号 による風車基礎定着部の破壊挙動に関する検討,コン クリート工学年次論文報告集,Vol.27,No.2, pp1603-1608,2005
- 13)石原孟, 土屋智史, 小松崎勇一, 古谷康昭: FEM を 利用した風車基礎ペデスタルの引抜き耐力の感度分 析, 土木学会第63回年次学術講演会講演概要集, 土 木学会, 2008
- 14)小松崎勇一, 篠崎裕生, 斉藤修一, 原田光男:風車 基礎ペデスタルの引抜きせん断耐力に関する実験的 検討, 土木学会第 63 回年次学術講演会講演概要集, 土木学会, 2008
- 15)斉藤修一,小松崎勇一,原田光男:風車基礎ペデス タルの引抜きせん断耐力に関する解析的検討,土木学 会第63回年次学術講演会講演概要集,土木学会,2008
- 16)土屋智史,本庄勇治,石原孟:FEM 非線形解析に基づく風車基礎接合部の力学的挙動の解明,土木学会第64回334風力発電設備支持物構造設計指針・同解説年次学術講演会講演概要集,土木学会,2009
- 17)Maekawa, K., Okamura, H. and Pimanmas, A.: Nonlinear Mechanics of Reinforced Concrete, SPON PRESS, 2003.
- 18)岡村甫,前川宏一:鉄筋コンクリートの非線形解析 と構成則,技報堂出版,1991

19)土木学会:コンクリート標準示方書-設計編-,2012

20)Z.P.Bazant : P.C.Prat, and P.A. Pfeiffer, Mode I fracture tests of concrete using different specimen geometrics, SMiRT9, Vol.H, pp.85~93, 1987

(2013年9月25日受付)