# 熱帯低気圧に伴う風速場の予測手法に関する研究

Prediction of Tropical Cyclone Induced Wind Fields

**種本** 純\*1

石原 孟\*2

Jun TANEMOTO Takeshi ISHIHARA

\*1 Graduate Student, Department of Civil Engineering, The University of Tokyo, 7-3-1 Hongo Bunkyo Tokyo, 113-8656, Japan, Fax:+81-3-5841-1147, E-mail: tanemoto@bridge.t.u-tokyo.ac.jp
\*2 Professor, Department of Civil Engineering, The University of Tokyo

# Abstract

Prediction methods for tropical cyclone induced wind fields by using mesoscale model and JMA best track of tropical cyclones are proposed. A tropical cyclone database is produced by using JMA best track and NCEP/NCAR Reanalysis Project data. It is found that the identification rate of tropical cyclone parameters in present database is higher than that in previous one, which was produced by the measured surface pressures at weather stations. Predicted wind speeds obtained from present database and previous one show good agreement with measurement. A combined wind field model is proposed to predict tropical cyclone induced wind fields, in which mesoscale model and typhoon model are used. Underestimations of wind speeds caused by mesoscale model at the tropical cyclone center and those by typhoon model at the outside region are improved by the proposed model.

**キーワード**:熱帯低気圧に伴う風速場,メソスケールモデル,気象庁ベストトラック Key Words: Tropical cyclone induced wind field, Mesoscale model, JMA best track

# 1. はじめに

洋上風車の構造設計に必要な極値風速及びその風速 場によりもたらされる極値波高を評価するために、熱 帯低気圧に伴う風速場を高精度に求める必要がある. これまでに数値シミュレーションにより極値風速を求 める手法が提案されている. Larsén et al.1) はデンマー ク周辺において温帯低気圧による極値風速の予測にメ ソスケールモデルを適用し, 観測値とよく一致する結 果を示したが、Yamaguchi et al.2) はメソスケールモデル により熱帯低気圧を予測し, 観測値と比較することに より、メソスケールモデルにより予測した年最大風速 が過小評価されることを示した.熱帯低気圧の風速場 の予測手法として、台風モデルが提案されている(例 えば,石原ら<sup>3)</sup>,光田ら<sup>4)</sup>).この手法では熱帯低気圧 の風速場を地上気圧の観測データから予測し、熱帯低 気圧の中心付近の風速を精度よく予測できるが、熱帯 低気圧の中心から離れた場所での風速を過小評価する 可能性がある.また、台風モデルにより熱帯低気圧の 風速場を求めるには最大旋衡風速半径,周辺気圧の2 つの熱帯低気圧のパラメータ(以降、熱帯低気圧パラ

メータ又はパラメータと記す)を同定する必要がある が、これらは Mitsuta et al<sup>5)</sup> により提案された気象台に おける地上気圧の観測データを用いる手法で同定され ている(例えば、光田<sup>4)</sup>、大熊<sup>6)</sup>)ため、地上気圧の 観測データがほとんど得られない洋上では熱帯低気圧 パラメータの同定率が低下し、熱帯低気圧の風速場を 求めることができない場合もある.

石原<sup>7</sup>は、洋上においても台風モデルによる風速場 を求められるようにするために、天気図の等圧線を観 測値と見なして熱帯低気圧パラメータを同定する手法 を開発した.この手法では熱帯低気圧の中心から半径 500km 以内において気象台の気圧観測データに加え、 天気図から読み取った等圧線データも使用した.これ により陸から離れた洋上においてもパラメータの同定 が可能となり、洋上におけるパラメータの同定率が格 段に向上したが、熱帯低気圧の中心から半径 500km 以 内に気象台の気圧観測値と天気図の等圧線の数が合計 5 つ以上という規定を設けたため、洋上においては熱 帯低気圧パラメータが同定されないケースが残る.

そこで、本研究では、まず気象庁ベストトラックと 全球気象再解析データを用いて熱帯低気圧のパラメー タに関するデータベースを構築し、石原<sup>7)</sup>の手法によ り構築された従来のデータベースと比較することによ り、熱帯低気圧のパラメータの同定率の違いを明らか にする、次に、メソスケールモデルと台風モデルを利

<sup>\*1</sup> 東京大学大学院工学系研究科大学院生 (〒113-8656 東京都文京区本郷 7-3-1) E-mail:tanemoto@bridge.t.u-tokyo.ac.jp \*2 東京大学大学院工学系研究科教授 (原稿受付: 年 月 日)

用した熱帯低気圧の風速場の予測モデルを提案し,熱帯低気圧の風速の観測データと比較することにより, 従来のメソスケールモデルと台風モデルを単独に用いた場合と本研究で提案した合成モデルを用いた場合の 予測精度を評価する.

#### 2. 熱帯低気圧データベースの構築

熱帯低気圧は、気象学的な定義に従えば中緯度に進 むにつれてその構造が温度傾度を持つように変化し、 温帯低気圧に変わる.一方、風工学分野では、年最大 風速の統計値に影響を与えるイベントとして熱帯低気 圧を捕え、台風経路情報などから得られる接近距離や 中心気圧に閾値を設け、熱帯低気圧によりもたらされ た風速とそれ以外の季節風とを区別する.本研究では、 これまで風工学分野で構築されてきたシミュレーショ ン手法に活用できるように、気象庁ベストトラックに 記録されたデータの全てを熱帯低気圧によるものと定 義し、データベースの構築を行う.

本研究では熱帯低気圧データベースを構築するため に、気象庁ベストトラックと全球再解析データである National Center for Environmental Prediction / National Center for Atmospheric Research (NCEP / NCAR) Reanalysis Project (以降, NNRP)を用いた.本研究で 用いる同定手法では、気象台の地上気圧の観測データ を使用しないため、洋上においても熱帯低気圧のパラ メータを同定することが可能である.

熱帯低気圧の地上気圧の分布 P(r)は, Schloemer<sup>9</sup>の 式により表すことができる.

$$\frac{P(r) - P_C}{P_{\infty} - P_C} = \exp\left(-\frac{R_m}{r}\right) \tag{1}$$

ここで, r は熱帯低気圧の中心からの距離, P<sub>c</sub>は気象 庁ベストトラックから得られる中心気圧である.最大 旋衡風速半径 R<sub>m</sub>,周辺気圧 P<sub>∞</sub>は未知であり,本研究 ではこれらを気象庁ベストトラックと全球再解析デー タを用いて求める.

式(2)に、気象庁ベストトラックの風速 15m/s を表す 半径  $R_{I5}$ と熱帯低気圧の影響を受けなくなる半径  $R_B$ の 関係を表す柏木<sup>10</sup>の経験式を示す.

$$V_{15}R_{15} + \frac{1}{2}fR_{15}^2 = \frac{1}{2}fR_B^2$$
(2)

ここで、fはコリオリパラメータ、 $V_{I5}$ は $R_{I5}$ における 風速 (15m/s) である.気象庁ベストトラックには風速 15m/s の領域を表す広い半円と狭い半円が記録されて いるが、本研究では大野木と上野<sup>11)</sup>の研究に従い2 つの半径を平均して $R_{I5}$ を求め、式(2)から熱帯低気圧 の影響を受けなくなる半径 R<sub>B</sub>を求めた.

 $R_B$ における地上気圧  $P_B$ が分かれば、式(1)から式(3) が導出される. さらに、 $R_{15}$ における傾度風速  $V_g = V_{15}$ (15m/s) とすると、式(4)が得られる. この 2 つの式 から 2 つの未知数である  $R_m$  と  $P_\infty$ が求まる.

$$P(r) = P_C + \left(P_{\infty} - P_C\right) \exp\left(-\frac{R_m}{r}\right)\Big|_{r=R_B} = P_B \qquad (3)$$

$$V_g(r) = \frac{1}{2} \left[ -fr + \sqrt{\left(fr\right)^2 + \frac{4r}{\rho} \frac{\partial P}{\partial r}} \right]_{r=R_{15}} = V_{15} \qquad (4)$$

ここで、 $\rho$  は大気密度である.本研究では最大旋衡風 速半径  $R_m$ の初期値を 1m に設定し、10m 刻みで  $R_m$ を 大きくしていきながら、 $V_g = 15 \pm 0.1$ m/s となった時の 最大旋衡風速半径  $R_m$ と周辺気圧  $P_\infty$ を求めた.

本研究で用いる全球再解析データの水平解像度は 2.5°x 2.5°と粗いため、3章で示す水平解像度 10km x 10km で計算したメソスケールモデル WRF<sup>12)</sup> (Weather Research and Forecasting Model)の海面気圧を用いて同 定したパラメータと比較検証した.ここでは、2000年 から 2009 年までの 10 年間で銚子地方気象台及び宮古 島地方気象台から半径 500km を通過した熱帯低気圧 について、最接近時のパラメータを比較検証した.Fig. 1 に、メソスケールモデルと全球再解析値を用いて同 定したパラメータの比較を示す.全球再解析データの 海面気圧は予め 0.1°x 0.1°に線形内挿して、*R*<sub>B</sub>の内外 5km の円周上にある格子点値を平均することにより *P*<sub>B</sub>を求めた.Fig.1 から、2つの海面気圧データを用い て同定したパラメータ間の違いは殆ど無いことがわか る.

以上より、本研究では、全球再解析データ用いて $P_B$ を求め、気象庁ベストトラックの $R_{15}$ が活用できる 1977年から2007年までの熱帯低気圧について上記手 法により6時間毎の最大旋衡風速半径、周辺気圧を同 定した.気象庁ベストトラックに記録された中心位置、 中心気圧に加え、本研究により同定した周辺気圧、最



Fig. 1 Comparison of tropical cyclone parameters identified by global reanalysis data (NNRP) and mesoscale model (WRF).

大旋衡風速半径のデータをまとめ、さらにこれらのデ ータをスプライン補間により 10 分毎の値に内挿して データベース化した.

1977年から2007年までの熱帯低気圧について、石 原の手法<sup>7</sup>により構築された熱帯低気圧データベース と、本研究により構築した熱帯低気圧データベースに おけるパラメータの同定率をFig.2に1°x1°毎に示す. 本研究では、熱帯低気圧の中心気圧が985hPa以下とな った時刻に、最大旋衡風速半径、周辺気圧が同定でき た割合を同定率として定義する.従来のデータベース では日本列島から離れた場所で同定率が50%以下とな る場所が多く見られるのに対して、本研究により構築 したデータベースでは、同定率が大きく改善されてい る.特に北緯30度以南では90%以上の高い同定率を 示している.また、本研究で構築したデータベースで は高緯度になるにつれて同定確率が低下していること がわかる.これは、熱帯低気圧の勢力が弱まるにつれ、 風速15m/sの領域が消滅したためである.

Table 1 には, 1977 年から 2007 年まで, 銚子地方気 象台及び宮古島地方気象台を中心とした半径 500km 以内を通過し,中心気圧が 985hPa 以下となった熱帯低 気圧の各気象台への最接近時にパラメータが同定でき た数を示す. 銚子地方気象台では最接近時に同定でき



100°E 110°E 120°E 130°E 140°E 150°E 160°E 170°E 180° Fig. 2 Identification rates of tropical cyclone parameters.

 Table 1
 Comparison of the number of identified tropical cyclones at Choshi and Miyakojima stations.

|            | Identified number (ratio) |                | Total  |   |
|------------|---------------------------|----------------|--------|---|
|            | Provious study            | Drecent study  | passed |   |
|            | Flevious study            | i iesent study | number |   |
| Choshi     | 68 (76.4%)                | 68 (76.4%)     | 89     |   |
| Miyakojima | 111 (68.9%)               | 154 (95.7%)    | 161    |   |
|            |                           |                |        | - |

た熱帯低気圧の数は従来のデータベースと同じである が、本州から離れた宮古島においては、従来のデータ ベースの同定率は 68.9%であるのに対して、本研究で 構築したデータベースでは 95.7%と高い同定率を示し ている.

Fig. 3 には熱帯低気圧の中心気圧による同定率の変 化を示す. 従来のデータベースでは中心気圧が 890hPa の熱帯低気圧においてもパラメータが同定できなかっ たケースがあったが、本研究により構築したデータベ ースでは、中心気圧 930hPa 以下の熱帯低気圧の同定率 は 100%である. また、従来のデータベースは中心気 圧が高くなるにつれ、同定率が著しく低下している. これは、石原の手法を用いる場合に、気象台の観測デ ータを利用できない洋上において同定する対象となる 熱帯低気圧は天気図の等圧線の数から決まるが,中心 気圧が高い熱帯低気圧では中心から半径 500km 以内 における等圧線の数が5つに満たないことがあり、同 定する対象から外れるためである.中心気圧が 980hPa の場合には、従来のデータベースの同定率は30%程度 であるのに対して、本研究により構築したデータベー スの同定率は80%以上の高い同定率を示している.

従来のデータベース及び本研究で構築したデータベ ースにより予測した熱帯低気圧の地上風速と観測風速 の比較の一例を Fig. 4 に示す.ここでは石原ら<sup>3)</sup>の台 風モデルを用いて,傾度風から地上風への変換を行っ た.観測値との比較方法の詳細は3章で説明する.本 研究で構築したデータベースにより予測した風速は,



Fig. 3 Comparison of identification rates for the central pressure of tropical cyclone in previous database and present one.



Fig. 4 Comparison of observed and predicted wind speeds by using the previous database and present one.

従来のデータベースによる予測値とほぼ同じであり, また,2つの予測値は観測値と概ね一致していること が分かる.

#### 3. 熱帯低気圧に伴う風速場の予測手法の提案

本研究ではメソスケールモデルによる風速場と台風 モデルによる風速場を合成することにより,熱帯低気 圧に伴う風速場の予測モデルを提案する.

風速場の合成には、大澤<sup>13)</sup>の手法を用いた.合成した風速場*u*<sub>C</sub>は、式(5)により求める.

$$u_C = W u_T + (1 - W) u_M \tag{5}$$

ここで、 $u_T \ge u_M$ はそれぞれ台風モデルとメソスケール モデルにより求めた風速場を表す. Wは重み関数であ り、次式により表される.大澤<sup>13</sup>の研究では経験的に  $n=2 \ge$ しているが、本研究では0.2から5までの値を 比較検討し、n=0.5を採用した.詳細については後述 する.以降、このモデルを合成モデルと呼ぶ.

$$W = \left(\frac{R_B^2 - r^2}{R_B^2 + r^2}\right)^n \tag{6}$$

本研究では観測された風速とメソスケールモデルに より予測された風速を一様粗度の平坦地形状の風速に 変換して使用した.式(7)と式(8)は観測された風速また はメソスケールモデルにより予測された風速 *u*,,風向  $\theta_r$ と一様粗度の平坦地形上における風速  $u_f$ ,風向  $\theta_f$ との関係を表す.

$$\theta_f = \theta_r - D \tag{7}$$

$$u_f = u_r / S \tag{8}$$

ここで, *S*及び*D*はそれぞれ実地形上と一様粗度の平 坦地形上との風速比及び風向偏角を表し,局所風況予 測モデル MASCOT<sup>14</sup>により求めた.本研究では一様 粗度の平坦地形上の粗度長を 0.01m,地上高さを 60m とし,風速と風向の変換を行った.

メソスケールモデルによる風速と風向の予測には Weather Research and Forecasting Model Ver.3.4<sup>12)</sup>(以降, WRF)を用いた.WRFの計算条件を Table 2 に示す. Fig. 5 には銚子地方気象台及び宮古島気象台を中心と した 2000km x 2000km の計算領域を示す.水平解像度 は 10km x 10km に設定した.計算時間は各気象台にお ける熱帯低気圧の最接近時刻から±1.5 日とした.物理 オプションは 2012 年に NCAR のリアルタイムハリケ ーン予報で用いられたものとした.初期値と境界値に は NCEP final operational global analysis data を使用し, 大気境界層より上層には WRF に標準装備されている 4 次元同化手法のグリッドナッジングを適用した.



Fig. 5 Computational domains used in the simulations.

Table 2 Configuration of WRF.

| Simulation time | 3 days                                   |
|-----------------|------------------------------------------|
|                 | (±1.5 days from closest approach time)   |
| Input data      | NCEP-FNL (6-hourly, 1° x 1°)             |
| Land use        | USGS 30 second                           |
| Domain          | 10km ( 200 x 200)                        |
| Vertical layer  | 34 levels (surface to 50 hPa)            |
| Physics options | RRTMG short wave radiation               |
|                 | RRTM long wave radiation                 |
|                 | WSM 6-calss graupel microphysics         |
|                 | Modifed Tiedtke cumulus parameterization |
|                 | Unified Noah land-surface model          |
|                 | YSU PBL parameterization                 |
|                 | Garratt surface enthalpy flux            |
| FDDA option     | Grid nuging exclude PBL                  |





台風モデルによる風速と風向の推定には、石原ら<sup>3)</sup>
 により提案された半理論式を用いた.このモデルでは、
 一様粗度の平坦地形上における地上高さzでの風速 u<sub>T</sub>
 (z) 及び風向偏角 y<sub>T</sub>(z) が、式(9)と式(10)から求まる

$$u_T(z) = u_g \left(\frac{z}{z_g}\right)^{a_u} \tag{9}$$

$$\gamma_T(z) = \gamma_s \left(1.0 - 0.4 \frac{z}{z_g}\right)^{1.1}$$
(10)

ここで、 $\alpha_u$ は平均風速のべき指数、 $z_g$ は傾度風高さ、 $\gamma_s$ は地表面における風向偏角であり、熱帯低気圧の大気境界層の特性量、傾度風 $u_g$ 、地表面粗度 $z_0$ から半理論的に与えられる。詳細は石原ら<sup>3)</sup>を参照されたい。傾度風 $u_g$ は式(4)により求め、熱帯低気圧のパラメータで

ある R<sub>m</sub>, P<sub>∞</sub>は WRF から求めた海面気圧の予測値から 2 章で述べた手法により同定した. Fig.6 に, メソスー ルモデル, 台風モデル及び本研究で提案する合成モデ ルの風速場の一例を示す.メソスケールモデルの予測 風速は熱帯低気圧の中心付近で台風モデルより小さい 値を示す.一方, 台風モデルでは中心から離れるほど 予測風速が小さくなる.本研究で提案する合成モデル では中心付近で台風モデル,中心から離れるとメソス ケールモデルの風速場が採用される.

各予測手法の精度検証を行うために、本研究では、 2000 年から 2009 年の 10 年間を対象とし、銚子気象台 及び宮古島気象台から半径 500km 以内を通過し、中心 気圧が 985hPa 以下となった熱帯低気圧の風速場を予 測し、気象台における風観測データとの比較を行った. Fig. 7 には、銚子地方気象台と宮古島地方気象台に



Fig. 7 Comparison of observed and predicted wind speeds by mesoscale, typhoon and combined models.



Fig. 8 Comparison of tropical cyclone tracks obtained from JMA best track and mesoscale model prediction.

おける観測風速とメソスケールモデル,台風モデル及 び合成モデルにより予測された風速の時系列の一例を, Fig. 8 に, Fig. 7 と対応する計算時間の気象庁ベストト ラックとメソスケールモデルにより予測された熱帯低 気圧の経路を示す.メソスケールモデルの予測風速は Larsén et al.<sup>15)</sup>により,台風モデルの予測風速は Yasui et al.<sup>16)</sup>により平均化時間が1時間から3時間程度の風速 に相当することが示されているため,ここでは全ての 風速に対して3時間移動平均を施し比較を行った.

銚子(Fig. 7 (a))では、メソスケールモデルは熱帯 低気圧による風速を若干過小評価するが、風速のピー クを捕えている。台風モデルは熱帯低気圧による風速 の最大値をよく再現しているが、熱帯低気圧の通過後 の風速を過小評価している。一方、本研究で提案した 合成モデルは、熱帯低気圧による風速の時系列変化を 精度よく予測していることが分かる。宮古島(Fig. 7 (b))ではメソスケールモデルは熱帯低気圧による風速 のピークを大きく過小評価しているのに対して、気象 庁ベストトラックの中心気圧と経路をそのまま用いた 台風モデルは観測された風速の時系列変化をよく再現 している。ただし、台風モデルでは熱帯低気圧の通過 後の風速を過小評価している。一方、本研究で提案し た合成モデルを用いる場合には熱帯低気圧による風速 のピーク及び通過後の風速がともに観測値とよく一致 していることが分かる.

メソスケールモデル, 台風モデル及び合成モデルに よる予測精度を定量的に評価するために, 年最大風速 をもたらした熱帯低気圧を対象とした、銚子気象台及 び宮古島気象台から熱帯低気圧の中心までの距離(以 降,接近距離と呼ぶ)による予測風速と観測風速との 相対バイアスの変化と気象台における観測風速の平均 値を示す (Fig. 9 及び Fig. 10). 接近距離が 250km 未満 の場合には、メソスケールモデルによる風速の予測値 のバイアスは銚子,宮古島ともに負の値になっており, 熱帯低気圧の風速を過小評価していることが分かる. 一方, 接近距離が 250km 以上では台風モデルによる風 速の予測値のバイアスは負の値を示し、500km以上の 場合にはさらに大きな負の値を示している、このこと は熱帯低気圧の中心から離れると、台風モデルにより 予測された風速が過小評価されていることに対応して いる.一方,本研究で提案した合成モデルでは,熱帯 低気圧の接近距離によらず、メソスケールモデル及び 台風モデルと同等かそれ以下のバイアスの絶対値を示 し、風速場の予測精度が向上していることがわかる.

Fig. 11 には,式(6)で示す重み関数のnの値を0.2 から5まで変化させた時の観測値と合成モデルによる予測値の接近距離別のバイアスを示す.nの値が小さいほど台風モデルの風速場が広域で反映され,逆にnの



Fig. 9 Observed mean wind speed and variations of the biases between measured and predicted wind speeds with distances from tropical cyclone center at Choshi station.



Fig. 10 Observed mean wind speed and variations of the biases between measured and predicted wind speeds with distances from tropical cyclone center at Miyakojima station.



Fig. 11 Comparison of the biases between observed and predicted wind speed by combined model changing weight function.

値が大きければ中心付近においてもメソスケールモデルの風速場が重みを持つようになる. Fig. 11 から, n=0.2 とすると中心付近では最も小さいバイアスの絶対値を示すが,接近距離が250km以上になると台風モデルの影響が強く出すぎるため過小評価する. n=5 とした場合には中心付近においてもメソスケールモデルの

風速場が反映され,宮古島において大きく過小評価し ている.Fig.11から,n=0.5が熱帯低気圧の接近距離 に依らず,銚子,宮古島ともに過小評価が改善される ため,本研究ではn=0.5を最適べき指数と判断し採用 した.なお、メソスケールモデルの予測値の過小評価 は計算条件を変えることにより改善する可能性がある が,本研究の手法では気象庁ベストトラックの中心気 圧と経路をそのまま用いることができるため,熱帯低 気圧の中心付近での風速の予測精度は殆ど計算条件に 依存せず,メソスケールモデルによる風速の過小評価 を改善できる.

次に,熱帯低気圧による 10 分平均の年最大風速を求め、観測値と比較することにより、予測精度を検証した. Yasui et al.<sup>16</sup>の研究によれば、台風時の 3 時間平均風速  $u_{3h}$  と 10 分平均風速の差は正規分布に従い、その標準偏差  $\sigma$  は式(11)により与えられる.

$$\sigma = 0.1 u_{3h} \tag{11}$$

本研究では式(11)の標準偏差をもつ正規分布を満たす 乱数を発生させ、3時間平均風速を10分平均風速に 変換し、観測された10分平均風速と比較した.Fig.12 に、各モデルから求めた熱帯低気圧による年最大風速 の予測値と観測値の比較を示す.銚子において、メソ



Fig. 12 Comparison of observed and simulated annual maximum wind speeds.

スケールモデルによる予測風速は観測値と概ね一致し ているが、宮古島においてはメソスケールモデルは年 最大風速の観測値を大きく過小評価していることが分 かる.本研究で提案した合成モデルでは、メソスケー ルモデルの予測値に見られた過小評価が改善されてお り、年最大風速についても台風モデルの予測値と同等 の予測精度が得られる.

以上より、本研究で提案した合成モデルにより、メ ソスケールモデル及び台風モデルを単独で用いる場合 に比べ、熱帯低気圧の風速場の予測精度が向上するこ とが分かる.

#### 4. 結論

本研究ではメソスケールモデルと気象庁ベストトラ ックを用いた熱帯低気圧の風速場の予測手法を提案し, 以下の結論を得た.

- 気象庁ベストトラックと全球気象再解析データを 用いて、熱帯低気圧のデータベースを構築した.
   従来の地上気圧観測データによるデータベースに 比べ,熱帯低気圧のパラメータの同定率が大きく 改善された.また、本研究で構築したデータベー スにより予測した熱帯低気圧の風速は、従来のデ ータベースから予測した風速とほぼ同じであり、 観測値とも概ね一致することが分かった.
- 2) メソスケールモデルによる予測風速と台風モデル による予測風速を合成する手法を提案した.気象 台における風観測データとの比較から、本提案モ デルを用いることにより、メソスケールモデルに よる熱帯低気圧の中心付近での風速の過小評価及 び台風モデルによる熱帯低気圧の外側での風速の 過小評価が改善されることが分かった.

なお、本研究の提案手法により求めた風速場を波浪 シミュレーションに適用した場合に、有義波高の予測 精度が向上され、詳細について別の論文で述べる.

# 謝辞

本研究は,独立行政法人新エネルギー・産業技術総 合開発機構(NEDO)の委託業務「洋上風況観測シス テム技術の開発」で得られた研究成果である.ここに 記して関係者の皆様に感謝の意を表す.

## 参考文献

- Larsén X. G., J. Badger, A. N. Hahmann and S. Ott: Extreme wind atlas from selective dynamical mesoscale modeling method. *Proceedings of EWEC 2011*, 7pp., 2011.
- 2) Yamaguchi A., J. Tanemoto and T. Ishihara: The applicability

of extreme wind estimation methods in tropical cyclone regions and their uncertainties. EWEA 2013 (poster), 2013.

- 石原孟,松井正宏,日比一喜:中立時の大気境界層にお ける強風の鉛直分布性質,その2,台風時の強風. 日本 風工学会論文集, No.66, pp.3-14, 1996.
- 光田寧,藤井健,塚本修:台風域内における地表風のシ ミュレーション. 京都大学防災研究所年報, No.25 B-1, pp.273-282, 1982.
- Mitsuta Y., Fujii T. and Kawahira K.: Analysis of typhoon pressure patterns over Japanese island. *Natural Disaster Sci.*, Vol. 1, No. 1, pp.3-19, 1979.
- 大熊武司,丸川比佐夫,安井八紀:レヴュー:モンテカ ルロ法を利用した台風シミュレーションによる強風の 評価. 災害の研究, Vol. 32, pp.101-113, 2001.
- 7) 石原孟:山岳地帯における社会基盤施設の耐風性能向上のための局地強風予測システムの構築.(財)東電記念 科学技術研究所研究助成成果報告書, 22pp., 2004.
- 石原孟,山口敦:モンテカルロシミュレーションと MCP 法を用いた混合気候における極値風速の予測. 日本風工 学会論文集, Vol.37, No.3, pp.105-116, 2012.
- Schloemer, R. W.: Analysis and synthesis of hurricane wind patterns over, Lake Okeechobee, Florida. *Hydrometeorogical Report*, No.31, 49.pp, 1954.
- 10) 柏木啓一: 台風ボーガスデータについて. 気象庁数値子 報課報告・別冊, No.36, pp.16-22, 1990.
- 11) 大野木和敏,上野充:台風ボーガスデータの改良. *気象 庁研究時報*, Vol.44, No.5, pp.247-269, 1992.
- 12) Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers: A description of the advanced research WRF version 3. *NCAR Tech. Note*, NCAR/TN-468+STR, 96pp. 2008.
- 大澤輝夫:台風時における沿岸海上風の推定手法.日本 風工学会誌, Vol.32, pp.178-185, 2005.
- 14) 石原孟,山口敦,藤野陽三:複雑地形における局所風況の数値予測と大型風洞実験による検証. 土木学会論文集, No.731/I-63, pp.195-211, 2003.
- 15) Larsén X. G., S. Ott, J. Badger, A. N. Hahmann, J. Mann: Recipes for Correcting the Impact of Effective Mesoscale Resolution on the Estimation of Extreme Winds. *J. Appl. Meteor. Climatol.*, Vol.51, pp.521–533, 2012.
- 16) Yasui, H., Ohkuma, T., Marukawa, H. and Katagiri, J.: Study on evaluation time in typhoon simulation based on Monte Carlo method. *J. Wind Eng. Indust. Aerodyn.*, Vol.90, pp.1529-1540, 2002.