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ABSTRACT 
 

In this study, SR (Sway-Rocking) model is proposed to consider the 

floater surge and pitch motions which have large influence on the tower 

loading of floating wind turbine, so that the tower loading can be 

estimated by the equivalent static method. A theoretical comparison of 

shear force between SR model and fixed-foundation model with floater 

acceleration acting on the tower base is performed and thus the 

problems of using the latter model have been clarified. The theoretical 

formulae to predict the wave-induced tower loading in the extreme 

wave conditions are proposed finally. 

  

KEY WORDS: SR (Sway-Rocking) model; surge motion; pitch 

motion; tower loading; complete quadratic combination (CQC) rule; 

floating offshore wind turbine; extreme wave conditions. 

 

INTRODUCTION 

 

Wind power is one of the fastest growing renewable energy 

technologies. Onshore wind farms are, however, unsightly and they 

swallow up valuable land for agriculture and urban development. 

Already some countries, are considering constructing huge wind farms 

offshore to take advantage of the generally steadier and stronger winds 

found in the sea (Wang, 2010). In Japan, the offshore consist of a vast 

wind resource in deep water where use of conventional bottom-

mounted wind turbines is not possible, and floating wind turbines are 

the most attractive. 

 

Based on the research of Henderson (2000), Jonkman (2007), and Phuc 

(2008), Syed (2010) developed a fully nonlinear finite element model 

(FEM) to investigate dynamic response of floating offshore wind 

turbine systems considering coupling between wind turbine, floater and 

mooring system. This model has been verified by a water tank 

experiment, thus can give accurate and realistic prediction of floater 

motion and tower loading due to wind and wave. With this FEM code 

the land-based wind turbine is compared under the same wind 

conditions as considered for the offshore floating wind turbines. It is 

found that floater motion increases the tower base moment. Thus, it is 

necessary to consider the effect of floater motion on the tower loading 

to check the serviceability of the wind turbines which are designed for 

the bottom-mounted systems. The problem is that all the previous 

research is based on numerical simulation, and the wave-induced load 

and wind-induced load are coupled together and the effects from 

different degrees of freedom of floater motion are also coupled, as a 

result the contribution of each motion is unclear yet. In most of the real 

designs of floating offshore wind turbine, the work of wind engineers 

and ocean engineers is separated. The ocean engineers can provide the 

floater response without considering the effect from the superstructure 

(wind turbine part), and the wind engineers usually only concern the 

wind load acting on wind turbine. Hence, the connection work for wind 

engineers to calculate the wave-induced load using the floater motion 

provided by the ocean engineers needs to be performed. Therefore, it 

would make sense for the wave-induced load and wind-induced load to 

be investigated independently, and then their combination can be 

performed to get the final design value. For each kind of load, the 

analytical formulae should be proposed to make the application more 

convenient and identify their dominant influence factors as well, which 

would be very useful for the optimization of floating wind turbine 

system. This study will employ the FEM code of Syed (2010) to 

simulate the floater motion and verify the analytical solution of tower 

loading. 

 

In order to propose the analytical formulae of wave-induced load, the 

calculating model is quite important. Takahashi (2006) used the fixed-

foundation model with acceleration acting on tower base to consider 

the influence of floater motion on the fatigue load. However, this fixed-

foundation model is not verified, and in most cases it is not able to 

produce the reasonable results. Hence, in this study it is necessary to 

propose an equivalent calculating model for wave-induced tower 

loading of floating wind turbine system.  

 

In this study, it is found that the nonlinearity from nonlinear 

hydrodynamic force is much more dominant than that from nonlinear 

mooring system, hence, the sway-rocking model which models the 

complex nonlinear mooring system of floating wind turbine as two 

kinds of linear springs and dampers is borrowed from earthquake 

engineering to clarify the contribution of each motion to the tower 

loading. Sway (surge motion) can be represented with the lateral spring 
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and rocking (pitch motion) with rotational spring. The effects of floater 

motion will be considered by acting a wave force on the floater. 

Different from earthquake engineering, the stiffness and damping 

should be identified by free vibration simulation using FEM, and wave 

force should be determined by known tower base response. Through 

the comparison with the full model by FEM simulation, SR model is 

verified to be the equivalent calculating model for wave-induced tower 

loading of floating wind turbine system. A theoretical comparison of 

shear force under regular wave by modal analysis is performed between 

SR model and fixed-foundation model to give a clear explanation why 

the latter model can not be used. With SR model, the effect of sway 

motion as well as rocking motion can be recognized separately by 

locking the other mode. Since the maximum response of sway and 

rocking can’t occur simultaneously, the combination of them becomes 

important. Referring to the seismic loads specified in AIJ (2004), 

square root of sum of squares (SRSS) and complete quadratic 

combination (CQC) are used for the combination. Through comparison, 

it will be determined that the CQC rule can give much better 

predictions for floating wind turbine system. Under irregular wave, the 

standard deviation is an important representative value for the dynamic 

wave load. It can also be calculated by the combination of sway and 

rocking effects by CQC rule. Thus, the maximum wave load can be 

calculated with the product of standard deviation and peak factor. A 

non-Gaussian peak factor model that mainly results from the resonance 

of tower vibration will be proposed in this research.  

 

All the described theories in this study are used for DLC6.2a of IEC-

61400-3 (2008) which is the extreme state where the wind turbine is in 

parked condition, so the effect of wind turbine control system is not 

taken into account here. It is also noted that this study focuses on the 

wave-induced load, and the wind load on wind turbine can be estimated 

by SR model as well, which has been discussed by Xu (2013). 

 

FLOATING WIND TURBINE SYSTEMS 
 

This study will use a semi-submersible type floater installed with 

NREL 5-MW baseline wind turbine with tension leg mooring and 

catenary mooring to investigate the influence of floater motion on 

tower loading, respectively. FEM considering coupling between wind 

turbine, floater and mooring system developed by Syed (2010) will be 

reviewed briefly. This code is used to simulate the floater motion and 

verify the analytical solution of tower loading. 

 

Properties of Floating Wind Turbine System 
 

The National Renewable Energy Laboratory’s (NREL) offshore 5-MW 

baseline wind turbine is used here. For detail regards the wind turbine 

reference made by Jonkman (2007). As the developed program is not 

able to consider pitch control, wind turbine is considered as stall 

regulated. The basic properties of this wind turbine are summarized in 

Table 1. The details of floater are available in the doctoral dissertation 

of Syed (2010). The salient features of the floater are listed in Table 2. 

 

The tension leg mooring arrangement is shown in Fig. 1 (a). Three 

tethers are considered, that are connected to each of the corner 

columns. The mooring arrangement is so considered to eliminate 

pitching motion of the floater. The catenary mooring system is 

considered to consist on three mooring lines, each having span of 400 

m. The mooring lines are separated at 120°, with front two lines having 
an angle of 60° with the incident wave and the third aligned in the wave 
direction. All the three lines have a common fairlead at the base of the 

central column of the floater that supports the wind turbine on top. The 

catenary mooring arrangement is shown in Fig. 1 (b). 

 

Table 1. Properties of NREL 5MW wind turbine (Jonkman, 2007) 

 

Rated Power 5 MW 

Rotor Orientation, Configuration Upwind, 3-blades 

Rotor, Hub diameter 126, 3 m 

Hub Height 90 m 

Cut-In, Rated, Cut-Out wind speed 5.0, 11.4, 25 m/sec 

Cut-In, Rated Rotor Speed 6.9 rpm, 12.1 rpm 

Rated tip speed 80.0 m/sec 

OverHang, Tilt 5.0 m, 5.0° 

Rotor Mass 110,000 Kg 

Tower Mass 240,000 Kg 

 

Table 2. Details of semi-submersible floater (Syed, 2010) 

 

Description Detail Dimension 

Span  60.0 m 

Submerged Depth  20.0 m 

Overall Height  30.0 m 

Total Weight  5,638,760 Kg 

Peripheral Bracing  φ 2.5 m 

Top φ 1.8 m 

Inclined φ 1.8 m Inner Bracing 

Bottom φ 1.8 m 

Top φ 9.0 m 
Corner Column 

Bottom φ 10.0 m 

Central Column  φ 9.0 m 

 

  

     (a) Tension leg mooring                                                                                

 

(b) Catenary mooring 

Fig. 1  Types of mooring systems analyzed in this study 
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Finite Element Model  
 
A finite element model that can use beam, truss and spring type 

elements and can consider full coupled interaction between wind 

turbine, floater and mooring system has been developed by Syed 

(2010). The time domain analysis enables the model to efficiently 

capture nonlinear effects. Morison equation with Srinivasan’s Model is 

used for estimation of hydrodynamic force on the system, restoring 

force is investigated using a proposed non-hydrostatic model and 

mooring force is estimated using nonlinear model considering mooring 

contact with seabed for catenary mooring and pre-tension for tension 

leg mooring. For details of this finite element model refers to the 

doctoral dissertation of Syed (2010), and here a summary of the 

numerical scheme is presented in Table 3. 

 
Table 3. Description of finite element numerical scheme (Syed, 2010) 

 

Dynamic Analysis Direct Implicit Integration (Newmark- β ) 

Formulation Total Lagrangian formulation 

Convergence Newton-Raphson Method 

Damping Estimation Caughey Series 

Element Type Beam (12-DOF), Truss (8-DOF) 

Aerodynamic force Quasi-static aerodynamic theory 

Hydrodynamic Force Morison Equation + Srinivasan Model 

Restoring Force Non-Hydrostatic Model 

Mooring Force Nonlinear 

Seabed contact Penalty Method 

 

SWAY-ROCKING MODEL 
 

In order to propose the analytical formulae for wave-induced tower 

loading, an equivalent calculating model of floating wind turbine 

system is in need. In this study, sway-rocking model shown in Fig. 2 is 

borrowed from earthquake engineering (AIJ, 2004) to clarify the 

contribution of each motion to the tower loading. The complex mooring 

system of floating wind turbine system is modeled as two kinds of 

springs and dampers. Sway (surge motion) can be represented with the 

lateral spring and rocking (pitch motion) with rotational spring. The 

effects of floater motion will be considered by acting a wave force on 

the floater. Different from earthquake engineering, the stiffness and 

damping should be identified by free vibration simulation using FEM, 

and wave force should be determined by known tower base response.  

 

Fig. 2 Sway-rocking model 

 

In order to give a clear explanation about the tower loading, the wind 

turbine (three blades, hub, nacelle, and tower) can be modeled as 11 

lumped masses (Table 4), since the aerodynamic force is not considered 

here. The three blades are regarded as rigid approximately and can be 

modeled as a large mass above the tower top with hub and nacelle 

together. The tower is divided into ten masses. 

 

Table 4. Lumped mass of wind turbine 

 

Height from tower base 
ih (m) Lumped mass 

im  (kg) 

0 4134403.52 

8.76 45861.86 

17.52 42825.06 

26.28 39891.40 

35.04 37060.89 

43.80 34333.51 

52.56 31709.23 

61.32 29188.10 

70.08 26770.12 

78.84 24455.25 

87.60 361661.80 

 

Stiffness and Damping 
 

With the full model of floating wind turbine system, taking the 

superstructure (wind turbine and floater) as rigid body, the sway 

frequency
Sω and rocking frequency

Rω  can be obtained by free 

vibration simulation using FEM. Thus, the stiffness of the two springs 

can be calculated as follows: 

2

1

n

S i S

i

k m ω
=

 
=   
 
∑                                                                               (1) 

2 2

1

n

R i i R

i

k m h ω
=

 
=   
 
∑                                                                           (2) 

The sway damping ratio Sξ and rocking damping ratio Rξ can also be 

estimated by comparing with the full dynamic FEM program. 
 

Equivalent Wave Force 

 
Since the tower base response can be known from the ocean engineer in 

the real project, which means the displacement 1[ ]x , velocity 
1[ ]v  and 

acceleration 1[ ]a at the tower base are given. In this study, the tower 

base response can be obtained from simulation. With modal analysis, 

the equivalent wave force can be calculated. 

 

      
(a) Sway mode                                (b) Rocking mode     

      

Fig. 3 Calculating model used in the modal analysis 
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By locking the rocking mode as shown in Fig. 3 (a), the modal equation 

of motion of j th mode in sway direction is: 

( ) ( ) ( )
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where       
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S

jM  is the generalized mass, 
S

jC  is the generalized damping and 
S

jω  

is the modal natural frequency in radians per second,
S

jf is the modal 

displacement, ( )1, ,S

kj k nφ = L is the normalized mode shape of the j 

th mode, and ( )waveF t is the equivalent wave force in sway direction. 

If the regular wave is used, the modal displacement ( )S

jf t  can be 

shown as: 

( ) ( ) ( )1

S S S

j j wave jf t F t Hφ ω=                                                            (4) 
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S

jβ is the ratio between external wave frequency ω and structural 

natural frequency, and 
S

jξ is the damping ratio, which is taken as the 

summation of structural damping ratio and hydrodynamic damping 

ratio.  

 

In modal analysis the excitations of the various different natural modes 

of vibration are computed separately and the results superposed. From 

Eq. 4, the tower base displacement can be calculated as: 

( ) ( ) ( ) ( ) 2

1 1 1

1 1

n n

S S S S S

j j wave j j

j j

x t f t F t Hφ ω φ
= =

= =∑ ∑                         (5) 

Hence, the equivalent wave force in sway direction can be calculated 

as: 

( ) ( )
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The equivalent wave moment in rocking direction can be calculated by 

locking the sway mode as shown in Fig. 3 (b) and using the modal 

analysis as well:  

( ) ( )

( )

1
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1

1

R

wave n
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j j
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M t

H

θ

ω φ
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=

∑
                                                           (7) 

( )1

R tθ is the tower base angular displacement, ( )R

jH ω is the 

frequency response function, and ( )1, ,R

kj k nφ = L is the normalized 

mode shape of the j th mode in rocking direction.  

 

From Eqs. 6~7, the equivalent wave force or moment can be calculated 

with the tower base displacement, damping ratio, the ratio between 

external wave frequency and structural natural frequency, and the mode 

shape of tower base. 

 

Verification of Sway-Rocking Model 

 
The natural periods of the two kinds of floating wind turbine system are 

tabulated in Table 5. The first mode shape is shown in Fig. 4. It is 

noticed that the sway-rocking model is able to give very close natural 

periods and mode shape to the full model. Fig. 5 shows the comparison 

of the shear force on wind turbine tower by FEM simulation. It is 

obvious that sway-rocking model shows good agreement with full 

model. Therefore, sway-rocking model is verified as the equivalent 

model to calculate the wave-induced tower loading for floating wind 

turbine system. 

 

Table 5. The first natural periods 

 

 
Tension leg system  

Full model / SR model 

Catenary system  

Full model / SR model 

Sway 31.3 s / 31.9s 26.8s / 26.2s 

Rocking - 14.3s / 15.0s 

 

0

20

40

60

80

100

0 0.5 1 1.5 2

Full model

SR model

H
e
ig
h
t 
fr
o
m
 t
o
w
e
r 
b
a
s
e
 (
m
)

Mode shape  
(a) Sway of tension leg system                                  

 

0

20

40

60

80

100

0 0.5 1 1.5 2

SR model

Full model

H
e
ig
h
t 
fr
o
m
 t
o
w
e
r 
b
a
s
e
 (
m
)

Mode shape  
(b) Rocking of catenary system 

 

Fig. 4 The first mode shape of wind turbine tower 

 

COMPARISON BETWEEN SR MODEL AND FIXED-

FOUNDATION MODEL 
 

A theoretical comparison between sway-rocking model and fixed-

foundation model (Takahashi, 2006) is performed to make their 

difference clear. The shear force at different tower height is derived 

with modal analysis for the sway-rocking model and fixed-foundation 

model. For the two models, since the first mode is dominant, the shear 

force from the first mode is compared. 
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Shear Force of Sway-Rrocking Model 
For sway mode, the shear force at node i can be obtained from the 

tower base response: 
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where ( )Sa t is the known sway acceleration at tower base. If only the 

first mode is considered, the shear force becomes 
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where 1 1 11

S S S

k kφ φ φ∆ = − . 1 11/S S

kφ φ∆  is defined as the elastic/solid ratio 

of mode shape at node k.      
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Fig. 5 Shear force on wind turbine tower of tension leg system  

 

For rocking mode, the linear acceleration
R

kx&&  at node k can be 

calculated from the angular acceleration which can be obtained from 

modal analysis. Like sway effect, the shear force at node i due to 

rocking motion can also be obtained from the tower base response: 
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where ( )Ra t is the known rocking acceleration at tower base. If only 

the first mode is considered, the shear force becomes 
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where 1 1 11

R R R

r rφ φ φ∆ = − . 1 11/R R

rφ φ∆  is defined as the elastic/solid ratio 

of mode shape at node r.  

 

Shear Force of Fixed-foundation Model 
 

The sway and rocking acceleration at tower base from the FEM 

simulation of floating wind turbine system will be used to a fixed-

foundation wind turbine in each corresponding direction.  

 

                              
       (a) With sway acceleration          (b) With rocking acceleration 

 

Fig. 6 Fixed-foundation model  

 

Fig. 6 (a) shows the fixed-foundation model with sway acceleration. 

The modal equation of motion is expressed as: 
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where kjφ is the normalized mode shape of the j th mode for fixed-

foundation model. The modal displacement can be shown as: 
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The structural relative acceleration at node k for the j th mode is: 
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s

jγ is the well-known participation factor, /j jβ ω ω= is the ratio 

between external wave frequency and structural natural frequency, and 

j
ξ is the structural damping ratio, and referring to Ishihara (2010), 

0.5%
j

ξ = is used here. The shear force at node i of tower can be 

calculated as: 
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If only the first mode is considered, the shear force becomes 

( ) ( ) ( )( ), 1 1 1 1 11 ,
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= +∑                                   (16) 

Fig. 6 (b) shows the fixed-foundation model with rocking acceleration. 
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The shear force at node i can be obtained from the modal analysis as 

well, as shown in Eq. 17.  
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r

jγ is the participation factor for the rocking direction. If only the first 

mode is considered, the shear force becomes 

( ) ( ) ( )( ), 1 1 1 1 1,
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Comparison of Shear Force 
 

Taking the sway direction as example, from Eqs. 9 and 16 it is found 

that both the shear forces of the SR model and fixed-foundation model 

consist of solid part and elastic part, as shown in Fig.7 (a). The solid 

parts are totally same, but the elastic parts are different. Fig. 7 (b) 

compares the elastic parts of shear force from the two models. In the 

real situation, since 1 11/
S S

nφ φ∆  of floating wind turbine system is 

usually less than 15%, the elastic/solid ratio of shear force will be less 

than 0.08, and doesn’t change with wave period; while for fixed-

foundation model, the elastic part of shear force is the function of 

1/T T , the ratio between external wave period and structural natural 

period. It is noticed that when 1/T T > 4, the fixed-foundation model 

underestimates the shear force, while when 1/T T < 4, it may give 

significant overestimation, which can be larger than 15%. Especially 

when 1/T T  becomes close to 1, the resonance would happen, so in this 

case this model is not reasonable at all. Therefore, the fixed-foundation 

model can not be used as the calculating model for floating wind 

turbine system. 

 

PREDICTION OF WAVE-INDUCED LOAD 
 

Based on the above discussion, the shear force on tower can be 

predicted using sway-rocking model with modal analysis. Both regular 

wave and irregular wave are considered here for tension leg mooring 

system and catenary mooring system, respectively.  

 

Wave Conditions 

 
The linear Airy wave is used to derive the shear force with modal 

analysis, since this kind of regular wave has single wave period and is 

easier to explain the effect of external frequency on the structural 

response. The extreme wave height 20extremeH m=  and wave periods 

varying from 10s - 20s at intervals of 1s are used in regular wave case. 

  

In the real situation, the irregular wave which is represented by the 

significant wave height sH  and the spectral peak period PT  should be 

used. In this study the extreme 3-hour sea state with a 50-year 

recurrence period is considered. In the short term, i.e. over a 3-hour or 

6-hour period, stationary wave conditions with constant sH  and 

constant PT  are assumed to prevail (IEC-61400-3, 2008). Thus, 

significant wave height 10.75m and peak wave period varying from 

10~20 sec at an interval of 1s are used in this research. The time history 

of wave elevation is generated using JONSWAP spectrum. The peak 

factor of wave is determined as 3.3; the shape factor is 0.07 for 

2 / PTω π≤ and 0.09 for 2 / PTω π> according to Chakrabarti 

(1987). Here,ω  is the angular frequency of wave.  

 

     
(a) Solid part and elastic part of shear force 

                            

 

(b) Elastic/solid ratio of shear force 

Fig. 7 Comparison of elastic parts of shear force 

 

Tower Loading under Regular Wave 
 

For regular wave case, in Eqs. 9 and 11, ( )Sa t and ( )Ra t can be 

replaced by their respective amplitude to calculate the amplitudes of 

shear force on tower due to sway motion and rocking motion 

accordingly. 

 

For tension leg system, the rocking motion has no contribution to the 

shear force, and the sway motion can determine the total load. While 

for catenary system, both sway motion and rocking motion have 

significant effect on tower loading of catenary system. Hence, the 

influence of the two motions should be combined together. From the 

FEM simulation, it is recognized that the maximum response of sway 

and rocking don’t occur concurrently, but a certain correlation exists 

between them. Referring to the seismic loads specified in AIJ (2004), 

complete quadratic combination (CQC) is used here for the 

combination. It is noted that the correlation between sway and rocking 

modes doesn’t change with the external excitation, i.e., wave force, and 

it only depends on the damping and natural frequency of the system.  

 

Referring to AIJ (2004), there is another method for sway-rocking 

combination: square root of sum of squares (SRSS), which takes the 

correlation factor as 0. Fig.8 indicates that SRSS rule underestimates 

the shear force. As the sway and rocking modes have closer 

eigenvalues, CQC rule can give much better results.  
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Fig. 8 Comparison of shear force from CQC and SRSS 

 

Tower Loading under Irregular Wave 
 

For irregular wave, the tower loading is a random process. Hence, the 

standard deviation and peak factor is considered and their product is 

used to calculate the maximum load in the equivalent static method. 

Based on the same idea as regular wave case, in Eqs. 9 and 11, 

( )Sa t and ( )Ra t can be replaced by their respective standard deviation 

to calculate the shear force standard deviation due to sway motion and 

rocking motion accordingly. For tension leg system, the sway motion 

can determine the total standard deviation; while for catenary system 

the standard deviation of shear force can also be considered as the 

combination of sway effect and rocking effect using CQC rule. 

 

Before proposing the formulae of peak factor, power spectrum density 

of tower base shear force is investigated. Fig.9 shows the comparison 

of power spectrum density of tower base shear force for the wave 

periods: 10s, 15s and 20s. It is noted that the dynamic tower loading 

consists of three parts. Taking the 10s case of tension leg system in 

Fig.9 (a) as example, the range around the first peak is the background 

motion part, which has the same peak frequency as the wave 0.1pn = , 

corresponding to the wave peak period 10s; The range around the 

second peak is due to the peak acceleration of the floater sway motion 

with the peak frequency 0.167sn = , corresponding to the peak period 

of sway acceleration 6s; The range around the third peak is the resonant 

part due to the tower vibration with the peak frequency 1 0.289n = , 

corresponding to the natural period of tower 3.5s. The second and third 

peaks result in the non-Gaussian characteristics of the shear force. 

From the comparison with 15s case and 20s case, it is found that when 

the wave period becomes longer, the two peaks will be reduced since 

the frequency difference from the wave becomes larger and external 

exciting effect becomes weaker, which means the non-Gaussianity will 

decrease when wave period increases. This feature is just the reason 

why the skewness 3α of tower base shear force for tension leg system 

in Fig.10 is significant for 10s-15s, and can be neglected after 16s. This 

skewness can be obtained from the simulation of tension leg floating 

wind turbine system. Therefore, the tower loading is considered as a 

non-Gaussian process for tension leg system. Based on the model of 

Kareem (1998), the non-Gaussian peak factor for the tower shear force 

under irregular wave is proposed as Eq.19. 

 

For catenary system as shown in Fig.9 (b), the second and third peaks 

are negligibly small compared to the background motion part, since the 

floater sway and rocking modes are much more dominant, and the 

tower resonance is only slightly excited. In 15s case and 20s case, the 

two peaks will not exist, and only the background motion part is left. 

As a result a Gaussian process can be assumed for the tower base shear 

force of catenary system. This feature is also the reason why the 

skewness for catenary system in Fig.10 is close to zero for all wave 

periods. With 3 0α = , the non-Gaussian peak factor of Eq.19 is 

reduced to the Gaussian form. 

 
 

(a) Tension leg system  

                                                

 
(b) Catenary system 

 

Fig. 9 Comparison of power spectrum density of tower base shear force  
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Fig.10 Comparison of skewness of tower base shear force between 

tension leg system and catenary system 
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(19) 

where 0ν ′  and 0ν are the zero up-crossing frequency of tower base 

shear force for non-Gaussian process and Gaussian process, 

respectively, and ( ) ( )2 2

0 0 3 3
/ 1 /18 1 / 9ν ν α α′ = + + .  

                                                                                               

From Fig.11, it is indicated that the non-Gaussian peak factor is 

necessary for tension leg system and it decreases with the wave period 

since the skewness and zero up-crossing frequency have the same 

tendency. The Gaussian peak factor is enough for catenary system and 

it doesn’t change much with wave period. The larger difference 

between non-Gaussian and Gaussian peak factors happens in the 

shorter wave periods of 10s~15s. 

 

0

2

4

6

8

0 5 10 15 20 25

simulation_Tension leg
non-Gaussian form
simulation_Catenary
Gaussian form

P
e
a
k
 f
a
c
to
r

Wave period (s)  
Fig. 11 Comparison of peak factors between tension leg system and 

catenary system 

 

CONCLUSIONS 
 

An equivalent SR model is proposed to consider the influence of floater 

surge and pitch motions on the tower loading of floating wind turbine 

systems. A theoretical comparison of shear force by modal analysis is 

performed between SR model and fixed-foundation model. Finally, the 

evaluation formulae of tower loading is proposed theoretically based on 

the equivalent static method. The conclusions are summarized as 

follows: 

 

(1)   Through the theoretical comparison between SR model and fixed-

foundation model, it is found that in short wave period, the fixed-

foundation model may give significant overestimation, which can 

be larger than 15%; while in long wave period, it underestimates 

the tower loading.  

 

(2)  The evaluation formulae of tower loading due to sway as well as 

rocking motion of floater are investigated separately by locking 

 

 

 

 

 

 

 

 

 

 

 

 

        the other mode with modal analysis. Their combination is 

calculated with CQC rule. The correlation between them only 

depends on the damping and natural frequency of the system.  

 

(3)   Under irregular wave, for tension leg system, a non-Gaussian peak 

factor is necessary due to the tower resonance mainly. The non-

Gaussianity will decrease with wave period, since the external 

exciting effect becomes weaker. For catenary system, the shear 

force history can be regarded as a Gaussian process. The effect 

from tower resonance is negligibly small compared to the 

background motion part, since the floater sway and rocking modes 

are much more dominant. 
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