IEC61400-1の標準乱流モデルに関する研究

A Study of the Normal Turbulence Model in IEC61400-1

石原 孟*1 山口 敦*2 老川 谁*3 ムハマド ワヒード サーワー*3

Takeshi ISHIHARA Atsushi YAMAGUCHI Susumu OIKAWA Muhammad Waheed SARWAR

^{*1}Professor, Department of Civil Engineering, The University of Tokyo, 7-3-1 Hongo Bunkyo Tokyo,

113-8656 Japan Fax:+81-3-5841-1147, E-mail: ishihara@bridge.t.u-tokyo.ac.jp ^{*2} Research Associate, Department of Civil Engineering, The University of Tokyo

*3 Research Fellow, Department of Civil Engineering, The University of Tokyo

Abstract

This study examines the suitability of Normal Turbulence Model (NTM) in IEC61400-1 for offshore conditions using wind records obtained in Japanese waters. The model parameters for estimation of the standard deviation of along-wind fluctuating velocity, σ_1 , in NTM are presented. The identified model parameters for the averaged value of σ_1 agreed well with those of IEC Normal Turbulence Model, but the parameters for the standard deviation of σ_1 were found larger than those in IEC. As a result, IEC Normal Turbulence Model parameters led to rather small standard deviation of σ_1 compared to the observation data. However, predicted standard deviation of σ_1 based on the proposed model parameters shows a good agreement with the observed one.

キーワード:IEC61400-1、標準乱流モデル、モデルパラメータ、乱流強度 Key Words: IEC61400-1, Normal Turbulence Model, Model parameters, Turbulence intensity

1. はじめに

風の乱れは、風力発電設備に作用する疲労荷重に大き な影響を与えるため、変動風速の標準偏差に関するモデ ルが重要である。一般に洋上風の乱流強度は、陸上のそ れに比べ小さいが、風向によって大きく変化することが報 告されている 1。また、洋上風の乱流強度は海岸線からの 距離によっても変化し、洋上に適用できる変動風速標準偏 差のモデルが必要である。

国際基準IEC61400-1の第3版²⁾(以下IECと呼ぶ)で は、標準乱流モデルが提示されている。谷垣ら3は、日本 における陸上の風況観測データを対象に IEC の標準乱流 モデルのパラメータを調べ、IECの標準乱流モデルに用い られているパラメータは日本における風況観測データから 同定された値と一致しないことを報告した。特に、変動風速 標準偏差の標準偏差に関するモデルパラメータの値は、 IEC の標準乱流モデルのパラメータの値を大きく上回ること を示した。これまでに IEC の標準乱流モデルに関する研究 が少なく、また洋上風況観測データを用いて IEC の標準乱 流モデルの適用可能性を調べた研究例がほとんどない。 従って、IEC の標準乱流モデルの洋上風への適用可能性 を明らかにするとともに、洋上に適用できるモデルパラメー タの提案が必要である。

*2 東京大学大学院工学系研究科特任助教

本研究では、まず日本近海における洋上風況観測デー タを用いて洋上風の標準偏差の特性を調べるとともに、IEC の標準乱流モデルの問題点を明らかにする。そして洋上風 況観測データを用いて同定されたモデルパラメータを基に、 洋上に適用できるモデルパラメータを提案する。最後に洋 上風況観測から得られた乱流強度の比較により、本研究で 提案したモデルパラメータの推定精度を検証する。

2. 洋上風況観測

2.1 洋上風況観測の概要

本研究では、福島県楢葉町の沖合 37km の磐城沖ガス 田における天然ガス掘削用櫓の頂部に設置した風向・風速 計により測定された洋上風況観測データ」)を用いた。観測 地点の東側から南側の方向は太平洋に面している。また北 西側から南西側は日本列島に面しており、西側 40km~ 90km の位置には標高 1000m 程度の高地がそびえている。 図 1 に観測地点の位置(北緯 37° 18'00', 東経 141° 27'35")を示し、図 2 に風況観測の状況を示す。風向・風速 計は海面から95mの高さに設置し、また安全のためにその 周囲に4本の避雷針を設けた。避雷針と風速計の水平距離 (最短)は1832mm、避雷針の直径は61mm であり、避雷針 から風速計までの距離と避雷針直径との比は30である。JIS C 1400-12-14(発電用風車の性能試験方法)に記載されている支 持物直径の 8.2 倍以上離れるという要件を十分に満たしてい るため、避雷針の風速計への影響はないと思われる。

東京大学大学院工学系研究科教授(〒113-8656 東京都文京区 *1 本郷 7-3-1) E-mail: ishihara@bridge.t.u-tokyo.ac.jp

^{*3} 東京大学大学院工学系研究科特任研究員 (原稿受付:2010年8月20日)

Fig. 1 Offshore observation site

(a) A drilling derrick (b) Propeller-vane anemometer Fig. 2 View of offshore observation system

	Manufacturer	Ogasawara Keiki Seisakusho Co., LTD	
	Туре	Propeller-vane anemometer	
Anemometer	Detection method	7-optical fibers type	
	Wind direction	16 directions	
	Wind speed	0~60m/s	
Logger	Manufacturer	NRG System	
	Туре	SYMPHONIE/2000-J	
	Sampling interval	2 seconds	
	Observed data	10-minutes average wind speed and wind direction	
	Observed data	10-minutes wind speed standard deviation	
	Observation period	Oct. 2004~Sept. 2006	

Table 1 Details of offshore observation syste

表1には洋上観測システムの仕様を示す。天然ガス掘削施設上では、防爆型機器の使用が義務付けられているため、風向やプロペラの回転数を光ファイバーで検出する風車型風向風速計を採用した。観測データは、現地に設置したデータロガーに記録し、毎日1回統計データを陸上に送信した。観測期間は、2004年10月から2006年9月までの2年間であり、本研究では、2004年12月から2005年11月までの1年間(観測期間 I と呼ぶ)の10分間平均風速とその標準偏差並びに10分間平均風向のデータを使用した。また、検証用データとして残りの12カ月(観測期間 II と呼ぶ)のデータを用いた。

2.2 洋上風況観測の結果

図3には観測期間Iの1年間に観測された平均風速から

求めた風配図および風速階級別出現頻度を示す。同期間 における全データに対する観測期間の有効データ数は 96.9%である。観測地点の主風向は冬の北西方向と春から 秋にかけての南北方向となっており、東風はほとんど観測 されない。風速階級別の出現頻度については、10m/s を超 える風速が 32%と頻繁に観測されており、平均風速が高い ことが分かる。

Fig. 3 Characteristics of offshore wind conditions

Fig. 4 Variation of turbulence intensity with wind speed

図4には観測期間Iにおける風速階級別乱流強度を示 す。この図には、次節に示す式(4)により表わされる風速階 級ごとの乱流強度の非超過確率 90%の値と乱流強度の小 さい地域に適用される国際基準IEC のカテゴリーCの乱流 強度をそれぞれ大きい黒丸と実線で示した。国際基準 IEC の標準乱流モデルにおけるパラメータ I_{ref} 、a、b、 α 、 β の値は、それぞれ 0.12、0.75、3.8、0、1.4 である。図4か ら、国際基準 IEC のカテゴリーC の乱流強度は、本観測地 点で得られた乱流強度をカバーできることが分かる。

2.3 IEC の標準乱流モデル

IEC における標準乱流モデルをより詳細に調べるため、 本研究では、谷垣ら³⁰の研究に従い、変動風速の標準偏差 σ_1 の平均値および標準偏差を次式により表す。

$$\sigma_{ave} = I_{ref} \left(aU + b \right) \tag{1}$$

$$\sigma_{\sigma} = I_{ref} \left(\alpha U + \beta \right) \tag{2}$$

ここで、 σ_{ave} は風方向の風速成分の標準偏差 σ_1 の平均値、 σ_{σ} は標準偏差 σ_1 の標準偏差である。また、Uは 10 分間 平均風速、 I_{ref} は平均風速15m/sの時における乱流強度の 期待値、a, bおよび α, β はそれぞれ σ_1 の平均値および その標準偏差を表わすモデルのパラメータを表す。

IEC では、 I_{ref} は風車設置場所の乱流強度の大きさに応じて変化する値であるが、モデルパラメータ $a \ge b$ および $\alpha \ge \beta$ の値は一定値として、それぞれ 0.75 \ge 3.8 および 0 \ge 1.4 \ge 定められている。これらのパラメータの値は洋上風に適用できるかどうかは不明である。

本研究では、風車のカットインとカットアウトの風速に対応 する3~25m/sの範囲において、風速1.0m/s毎(1つのビン と呼ぶ)に風向別風速階級別変動風速標準偏差 σ_1 の平均 値 σ_{ave} と標準偏差 σ_{σ} を求めた。高風速域においては、一 つのビン内のデータ個数が100個未満の場合は解析の対 象からはずした。

Fig. 5 Classification of wind direction.

観測地点における乱流強度は陸地の影響を受け風向に よって変化するため¹⁾、式(1)と式(2)に示すモデルパラメー タを同定する際には、表2に示す2つの風向区分に分けた。 図5に示すように、風向区分WDIは、観測点の南西(陸ま で60km)から北西(陸まで90km)の陸地の影響を受ける風 を対象とし、風向区分WDIIは海から吹く風を対象とした。

Table 2 Relationship between classified turbulence intensity and the wind direction

	Wind Direction		
WDI	WSW, W, WNW, NW		
WD II	N, NNE, NE, ENE, SW, NNW E, ESE, SE, SSE, S, SSW		

本研究では、同定したモデルパラメータの精度を検証するために、標準偏差 σ_1 の90%タイル値 σ_{90} は正規分布を仮定し次式により表わした。

$$\sigma_{90} = \sigma_{ave} + 1.28 \times \sigma_{\sigma} \tag{3}$$

また乱流強度の 90%タイル値 I₉₀ は式(1)、式(2)、式(3)を用いて導出した次式により求めた。

$$I_{90} = \sigma_{90} / U = I_{ref} \left(a + 1.28\alpha + (b + 1.28\beta) / U \right)$$
(4)

3. 標準乱流モデルのパラメータの同定

3.1 標準偏差 σ₁ の平均値に関するパラメータの同定

図6には観測期間Iにおける各風向区分の*I_{ref}*で基準化 した *σ_{ave}*と風速との関係を示した。*σ_{ave}*/*I_{ref}*は風速ととも に増大する。各風向区分によるばらつきは小さく、IEC のモ デルパラメータを用いて算出した値と同様な傾向を示す。

Fig. 6 Variation of σ_{ave} / I_{ref} with wind speed

パラメータaとbは、 σ_{ave} / I_{ref} と風速データをもとに最小 二乗法により近似直線の勾配と切片から同定した。表 3 に は同定したパラメータの一覧を示す。ここで用いた I_{ref} は、 各風向区分内の全データから求めた風速 15m/s の時の乱 流強度である。日本列島から吹く風の I_{ref} は太平洋から吹 く風の I_{ref} より大きくなっている。パラメータaは、0.69~ 0.71 の範囲にあり、その平均値は 0.70 であり、IEC の標準 乱流モデルにあるパラメータ 0.75 との差は 5.6% である。ま た、パラメータbは、4.0~4.6 の範囲にあり、その平均値は 4.3 であり、IEC の標準乱流モデルにあるパラメータ 3.8 との 差は 13.2% である。

Table 3 Identified parameters for σ_{ave} and σ_{σ}

	I _{ref}	а	b	α	β
WDI	0.08	0.69	4.6	0.09	3.37
WDII	0.05	0.71	4.0	0.35	2.71

3.2 標準偏差 σ_1 の標準偏差に関するパラメータの同定

図7には、観測期間Iにおける各風向区分のIref で基準

化した σ_{σ} と風速との関係を示す。 σ_{σ}/I_{ref} は風速とともに 増大し、乱流強度 I_{ref} によって勾配が大きく異なる。パラメ ータ α と β は、 σ_{σ}/I_{ref} と風速データをもとに最小二乗法 により近似直線の勾配と切片から同定し、表 3 に示した。パ ラメータ α は 0.09~0.35、 β は 2.71~3.37 の範囲にある。 図 7 から、観測から得られた σ_{σ}/I_{ref} は、IEC の標準乱流 モデルにより求めた値よりかなり大きいことが分かる。このよ うな差は陸上においても確認されている³。

Fig. 7 Variation of $\sigma_{\sigma} / I_{ref}$ with wind speed

3.3 モデルパラメータの感度分析

モデルパラメータ $a \ge b$ および $a \ge \beta$ が乱流強度 I_{90} の 推定精度に与える影響を調べるために、風向 WDII を例に、 観測から得られた乱流強度 $I_{90} \ge c$ 式(4)により推定された乱 流強度 $I_{90} \ge c$ の比較を図 8 に示す。ここで、乱流強度 I_{90} の 推定値は観測から得たパラメータの値と IEC の標準乱流モ デルのパラメータを用いて算出した。図中の Obs.は観測値 のパラメータ、model はIEC の標準乱流モデルのパラメータ を示す。パラメータ $a \ge b$ の観測値は 0.71 ≥ 4.0 、IEC の標 準乱流モデルのパラメータは0.75 ≥ 3.8 を用いた。また $a \ge \beta$ の観測値は 0.35 ≥ 2.71 、IEC の標準乱流モデルのパラメ ータは $0 \ge 0.14$ を用いた。 I_{ref} はすべてのケースについて 表 3 に示す観測値を用いた。

Fig. 8 Dependence of I_{90} on model parameters

図 8 から分かるように、パラメータaとbは観測から得られた値を用いても、IEC の標準乱流モデルのパラメータを 用いても、求められた乱流強度 I₉₀ には大きな差がない。 一方、パラメータαとβは、観測から得られた値を用いて 求めた I₉₀は観測値とよく一致するが、IECの標準乱流モ デルのパラメータを用いて求めた I₉₀は観測値に比べ過小 評価されている。このことから、IECの標準乱流モデルの推 定精度を高めるためには、パラメータαとβの値を再検討 する必要があることが分かる。

4. IEC の標準乱流モデルにおけるパラメータの提案

第3章から分かるように、パラメータαとβの観測値は IEC に示されている値と大きく異なる。その結果、IEC の標 準乱流モデルのパラメータを用いて求められた変動風速 標準偏差の標準偏差は、観測値に比べ過小評価されること が分かった。本章ではパラメータαとβに関して洋上に適 用できる評価式を提案するとともに、観測データと比較する ことにより、その推定精度を検証する。

4.1 平均値 σ_{m} のモデルパラメータの提案

図9には観測データから同定されたパラメータaとbの *I_{ref}*による変化を示す。図中には観測期間 II のデータから 同定されたパラメータを併せて示した。

パラメータaの値が大きくなるとパラメータbの値が小さくなる。実際 σ_{ave} の値はパラメータaとbの両方に依存す

るため、σ_{ave}の推定値と観測値と比較することにより、パラメ ータαとbの妥当性を判断すべきである。

図 10 には、 σ_{ave} の推定値と観測値との比較を示し、 σ_{ave} の推定値の算定には IEC の標準乱流モデルのパラメータ $a = 0.75 \ b = 3.8 \ embed{embedde}$ を用いた。図 10 から、IEC のモデルパ ラメータを用いて求められた推定値は観測値とよく一致し ており、IEC の標準乱流モデルのパラメータは妥当である ことが分かる。なお、式(1)からb = 15(1-a)が導出され、aの値が決まれば、bの値が一義的に決まるので、本提案で は $b = 3.75 \ embedde$ と

Fig. 10 Comparison of observed and calculated σ_{ave}

4.2 標準偏差 σ_a のモデルパラメータの提案

図11には、観測データから同定されたパラメータαとβ の*I_{ref}*による変化を示す。図中には観測期間 II のデータか ら同定されたパラメータを併せて示した。

本研究で提案したパラメータαとβに関する評価式を次 のように表し、図11に破線で示した。

$$\alpha = \begin{cases} 0.1, \text{ wind from the Japanese islands} \\ 0.3, \text{ wind from the Pacific Ocean} \end{cases}$$
(5)

$$\beta = \begin{cases} 3.0, \text{ wind from the Japanese islands} \\ 3.0, \text{ wind from the Pacific Ocean} \end{cases}$$
(6)

図 11(a)から、パラメータαは、海側から吹く風の時は 0.3 に近く、陸側から吹く風の時は 0.1 に近い。また、図 11(b)から、パラメータβは、海側と陸側から吹く風とも 3.0 に近い値 を示す。このように、洋上風のパラメータαとβの値は、海 側と陸側ともに、IEC の標準乱流モデルに示すパラメータ の値α=0とβ=1.4 より大きい。谷垣ら³⁾は陸上の風況観 測データに基づき、α=0.15 とβ=2.0 およびα=0と β=3.0 の二つの組み合わせを提案した。本研究で提案し たパラメータは谷垣らが提案したパラメータと同様な傾向を 示す。

(b) Parameter β Fig. 11 Variation of parameters α and β with turbulence intensity I_{ref}

図12には、本研究で提案したパラメータとIECの標準乱 流モデルのパラメータを用いて求められた σ_gの推定値と 観測値(観測期間 I)との比較を示す。IEC の標準乱流モデ ルのパラメータを用いて求めた値は観測に比べかなり過小 評価されるが、本研究で提案したパラメータを用いて求め た値は観測値とよく一致する。図 12 から、IEC の標準乱流 モデルにおける σ_gの評価式のパラメータは適切ではない ことが分かる。

Fig. 12 Comparison of observed and calculated σ_{σ}

4.3 モデルパラメータの精度評価

モデルパラメータ $a \ge b$ および $\alpha \ge \beta$ が乱流強度 I_{90} の

推定精度に与える影響を評価するために、観測期間 I から 得られた全ての乱流強度 I_{90} のデータと式(4)により推定さ れた乱流強度 I_{90} との比較を図 13 に示す。パラメータ a と b および a と β は表 4 に示す値を用い、 I_{ref} は各風向区 分における値を用いた。本研究で提案したパラメータにより 求めた I_{90} は観測値とよく一致するが、IEC の標準乱流モ デルのパラメータを用いて求めた I_{90} は、観測値に比べて 過小評価されていることが分かる。

Fig. 13 Comparison of observed and calculated I_{90}

Table 4 Proposed and IEC model parameters

	Present		
	Wind from the Wind from the		IEC
	Japanese islands	Pacific Ocean	
а	0.7	0.75	
b	3.75		3.8
α	0.1	0.3	0
β	3	3	1.4

推定精度を評価するために、本研究では次式に示す推 定誤差の自乗和の平方根 *RMSE* (Root Mean Square Error)を用いた。

$$RMSE = \sqrt{1/n \sum ((x_{cal} - x_{obs}) / X_{obs})^{2}}$$
(7)

ここで、*x_{obs}とx_{cal}*は、それぞれ観測値と推定値、*X_{obs}*は観測値の平均値を表わす。*RMSE*は0に近いほど、推定値と 観測値との差が小さいことを表わす。

	Table 5	Eval	uation	of	prediction	n error
--	---------	------	--------	----	------------	---------

	Observation	RMSE by using	RMSE by using
	period	parameters in the	parameters in IEC
		present study	model
_	Ι	5.4%	5.2%
$\sigma_{_{ave}}$	σ _{ave} II 6.0%		6.0%
_	Ι	8.7%	77.6%
σ_{σ}	П	22.8%	69.2%
7	Ι	8.9%	31.9%
I ₉₀	П	9.0%	22.2%

表5には σ_{ave} 、 σ_{σ} 、 I_{90} の推定誤差のRMSEを示す。表

中には、観測期間 II の値も表した。 σ_{σ} の推定誤差の *RMSE*は IEC の標準乱流モデルの 77.6%から本提案式の 8.7%に大きく減少した。その結果、 I_{90} の *RMSE*も、IEC の 標準乱流モデルの 31.9%から本提案式の 8.9%に大きく減 少した。同様に、観測期間 II における $\sigma_{\sigma} \ge I_{90}$ 推定誤差の *RMSE*は本提案式を用いることにより大きく改善されてい ることが分かる。

5. まとめ

日本近海における洋上風況観測データを用いて洋上風の標準偏差の特性を調べるとともに、IECの標準乱流モデルと比較することにより、以下の結論を得た。

- 国際基準 IEC のカテゴリーCを用いる場合には今回の 洋上観測地点における乱流強度をカバーできる。
- 2) 洋上風況観測データから同定された変動風速の標準偏差の平均値に関するパラメータの値は、IEC の標準乱流モデルに用いられているパラメータの値とほぼ一致したが、変動風速標準偏差の標準偏差に関するパラメータの値はIEC の標準乱流モデルのパラメータの値を大きく上回ることが分かった。
- 3) IEC の標準乱流モデルのパラメータを用いて求めた標準偏差の平均値は観測値とよく一致するが、変動風速標準偏差の標準偏差は、観測値に比べ過小評価されることが分かった。一方、本研究で提案した標準偏差モデルにおけるパラメータの評価式を用いて求めた変動風速標準偏差の標準偏差は、観測値とよく一致した。

今後、NEDO の洋上風況観測実証研究のデータが得ら れれば、引き続きモデルの検証を行っていきたい。

謝辞

本研究では、国立大学法人東京大学、東京電力株式会 社、鹿島建設株式会社の共同研究で取得した洋上風況観 測データを用いた。また IEC 61400-1 の標準乱流モデルに おけるパラメータの提案は、独立行政法人新エネルギー・ 産業技術総合開発機構(NEDO)の委託業務で得られた研 究成果である。ここに関係者の皆様に感謝の意を表する。

参考文献

- 土谷学、石原孟、福本幸成、助川博之、大窪一正:洋上風力発 電導入に向けた洋上風況観測、第19回風工学シンポジウム論 文集、pp.121-126、2006.
- IEC 61400-1: Wind turbines-Part 1 Design requirements, Ed.3, 2005.
- 3)谷垣三之介、小垣哲也、松宮煇、今村博:我国風況の乱流特性 とIEC61400-1 Ed.3の標準乱流モデル ―第2報―、第32回 風力エネルギー利用シンポジウム、pp.127-130、2010.
- 4) JISC 1400-12-1:発電用風車の性能試験方法、2010.