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ABSTRACT: A FEM code was developed to predict the dynamic behaviors of elastic floating off-
shore wind turbine systems in the time domain, employing the Morison’s equation to calculate the 
hydrodynamic drag forces and inertia forces in the perpendicular to the columns of floater, and 
quasi-steady theory to calculate the aerodynamic forces on wind turbines. Since the relative veloci-
ties of the moving element were used to predict the drag forces, the hydrodynamic and aerodynamic 
damping were automatically taken into account during the simulation. The responses predicted by 
the proposed numerical model showed a good agreement with experiments, and those by the con-
ventional numerical models were overestimated due to the lack of considering the interaction be-
tween wind turbines and floater. The elastic responses of the floater were investigated, and the peak 
responses were observed at resonant points around the natural periods of the deformation of the 
elastic model. 
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1 INTRODUCTION 
 
Evaluation of dynamic behaviors considering the interaction between floater and wind turbines is 
one of the important factors in the process of optimization and design of the floating offshore wind 
turbine systems. In order to investigate the dynamic behaviors of the floaters, there are two different 
approaches. One is the application of the so-called Morison’s equation [1], and another is the linear 
potential theory [2], which were commonly used in civil engineering and oil & gas industry, respec-
tively. Although, the linear potential theory is raised from the assumptions of zero viscosity of the 
fluid, the Morison’s equation considers the effect of viscosity represented by the non-linear hydro-
dynamic drag force. Hederson et al. [1] used the Morison’s equation for the floating structure with 
large diameter sub-structures, in which the hydrodynamic drag force would be small compared with 
the inertia force. They ignored the hydrodynamic drag force and solve the linearized equation of 
motion in the frequency domain. This simplification might lead some error to predict the dynamic 
behaviors of the light floaters with small diameter sub-structures, such as the floater proposed by 
Ishihara et al.[3]. The nonlinear hydrodynamic drag force can be linearized and solved the equation 
of motion with some iteration and incorporated into the linear potential theory in the frequency do-
main. However, the linearization might also lead to overestimate or underestimate the dynamic re-
sponses of the floaters. 

In the present study, a FEM code based on the Morison’s equation has been developed and 
solved in the time domain to consider the nonlinear terms such as nonlinear hydrodynamic and 
aerodynamic forces, nonlinear mooring, etc… and the interaction between wind turbines and 
floater. The performance of the code was verified in comparison with the experimental results ob-
tained in the part 1 of this study. In order to investigate the effect of elastic deformations, the dy-
namic responses of elastic model were simulated and the results were compared with those of rigid 
model. 
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2 NUMERICAL METHOD OF FULL DYNAMIC SIMULATION 

2.1 Governing equation 
The general formulation of the differential equation of motion for a floating offshore wind turbine 
system can be written as 

[ ]{ } [ ]{ } [ ]{ } { } { } { } { }G R E WM X C X K X F F F F+ + = + + +&& &                        

(1) 
where [ ]M is a mass matrix, [ ]C is the damping matrix, [ ]K is a stiffness matrix of structure, X and 
its derivatives are unknown vectors of 6 degree of freedom (3 translations and 3 rotations) and their 
derivatives. The terms in right side of the equation (1) are the external force vectors acting on the 
system and typically varies with time, where { }GF is the mooring force, { }RF is the hydrostatic re-
storing force, { }EF is the wave exciting force, { }WF is the aerodynamic force.  

The mooring force is defined as follow, 

{ } [ ]{ }G GF K X= −                                        

(2) 
where the mooring stiffness [ ]GK is determined based on a result of catenary analysis from the 
steady forces, i.e. tidal current force, wind force and wave drift force. 

Under assumption of infinitesimal displacement theory, hydrostatic restoring force can be simpli-
fied by the first-order hydrostatic restoring force coefficient [ ]RK [5] as follow. 

{ } [ ]{ }R RF K X= −
0 0

                                       (3) 

[ ]

0 0 0 0
0 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 0

w w
R

X

Y

gA
K

W GM
W GM

ρ

 
 
 
 −

= 
− × 

 − ×
 
  


                          

(4) 
where wρ is the density of water, is the gravity acceleration, g wA is the still surface area, is the 
weight of model, and are the meta-center height in the X and Y direction, respectively. 

W
XGM YGM

In order to calculate the wave exciting force on the floating structure, the modified Morison’s 
equation by Sarpkaya et al. [6] can be adapted as shown in the equation (5). 

( )0.5 1E w D r r w M rF C Du u L C u u A Lρ ρ = ∆ + − + & &                         (5)  ∆
( ) ( )0.5 1w D w M w MC D L u X u X C A Lu C A LXρ ρ ρ= ∆ − − + ∆ − −& & & ∆ &&                   (6) 

= + +ED EW EMF F F                                      (7) 
EM EF M X= &&                                       (8) 

where the first term EDF  is the drag force, the second term EWF  is in proportion to the wave particle 
acceleration and the third term is the added inertia force, EM is called as added mass coefficients. 
Here, is the length of the column, and is the relative wave particle velocity and relative 
wave particle acceleration.

L∆ ru ru&

X&  is the velocity of the moving element, DC and MC are the hydrody-
namic drag and inertia coefficients, respectively, is a typical reference dimension of the floating 
column, is the wave particle velocity of water, and  is the wave particle acceleration of water. 
The drag and inertia coefficients depend on the cross-sectional shape of the structure, was com-
monly given as constant values, and 

D

MC

u u&

2.01.17=DC = for the cylindrical structure members, 
and for the rectangle structure members by Motora et al. [5]. Hendeson et al.[1] 

and Offshore Standard DNV-OS-J101[7] showed that those values were in general the functions of 
the Reynolds number 

2.DC = 05 2.29MC =

maxRe u D ν= , the Keylegan-Carpenter number maxcK u T D=  and the relative 
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roughness, where is the maximum wave particle velocity at still water lever, maxu ν is the kinematic 
viscosity of water, is the period of the waves. T

1 2 3
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2Vα

( )M Vρ α

LC

[ ]( W+ +

]Kβ

Since the relative wave particle velocity as well as the first term of the wave exciting force con-
tains the velocity of the moving element, the hydrodynamic damping is automatically taken into ac-
count during the simulation. 

The Morison’s equation is well known in estimation of the exciting force in the perpendicular to 
the slender columns, especially for offshore structures with fixed cylinder foundation in civil engi-
neering. However, it cannot predict accurately forces acting on the bottom of the vertical cylinder. 
In this study, the added inertia force acting on the bottom of the base floater is defined by the haft 
sphere proposed by Haslum [8] as shown in equation (9), where is the diameter of the bottom of 
the base floater. 

D

( ) ( )32E w MM C Dρ π= −                                                (9) 
Moreover, the damping force as the effect from the bottom of the vertical cylinder is assumed by 

equation (10), where ( )3iX i =&  is the velocity of the moving element in the vertical direction and 
[ ]EDC is a damping matrix. This damping force can be modeled by a pseudo structural damping of 
the system in the vertical direction. 

{ } [ ] ( 3ED EDF C i= − = )                                            (10) 
The quasi-steady aerodynamic theory is used in calculation of the aerodynamic forces, in which 

the drag, the lift force and the moment are estimated by using aerodynamic coefficients and the 
relative wind speed as follows. 

{ } { , ,W D LF F F F=                                                      (11) 

( )0.5D DF dCρ=                                                    (12) 

( )0.5L LF dCρ=                                                    (13) 
20.5M

2F d C=                                                  (14) 
where ρ is the density of air, is a reference dimension of the wind turbine, d DC is the aerodynamic 
drag coefficient, is aerodynamic lift coefficient, MC is aerodynamic moment coefficient, α is 
angle of attack of the relative wind speed . Here, the relative wind speed with respect to the mov-
ing element can be written as  

V

V U X= − &                                                           (15) 
where, is the wind velocity, U X& is the velocity of the moving element. Since the relative wind 
speed as well as aerodynamic force terms contains the velocity of the moving element, the aerody-
namic damping is automatically taken into account during the simulation. 

2.2 Numerical scheme 
In this study, in order to solve the equation (1), the mooring force, hydrostatic restoring force and 
the added inertia force were moved to left side of the equation. The equation (1) can be rewritten as, 

[ ] [ ]( ){ } [ ]){ } [ ] [ ] [ ]( ){ } { } ( ) { }E ED G R ED EWM M X C C X K K K X F F F+ + + + = + +&& &         (16) 

A FEM code based on equation (16) was developed to predict the eigen-periods and dynamic re-
sponses of the floating offshore wind turbine system. A brief description of the code is summarized 
in Table 1. The beam elements were used for the discretization and the mass of each element was 
concentrated at its nodes constructing a symmetrical lumped mass matrix. 

The damping matrices is defined by Rayleigh damping method [9] and it can be written as fol-
lows, 

[ ] [ ] [C Mα= +                                 (17) 
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[ ] [ ] [ ]( ) [ ]1ED EC M Mα= + + 1 Kβ                            (18) 

where ,α β is the function of the eigen-periods and structural damping ratios, 1 1,α β is the function of 
the eigen-periods and damping ratios of the system in the vertical direction.  
 

Table 1. A brief description of the FEM code 
Dynamic analysis Direct numerical integration, the Newmark method 
Eigenvalue analysis Subspace iteration procedure 
Element type Beam element 
Formulation Total Lagrangian formulation 
Damping Rayleigh damping 

3 NUMERICAL RESULTS 

In order to evaluate the performance of the developed 
FEM code, a floating offshore wind turbine system model 
with the beam elements was constructed using the 
structural properties of experimental model [3] including 
186 nodes and 188 elements, where the floater has 48 
nodes and 50 elements, and each wind turbine has 47 
nodes and 46 elements (figure 1). Here, the mooring was 
simplified by the longitudinal linear spring. 

An eigenvalue analysis was carried out and the eigen-
periods were compared with the natural periods of the free 
vibration test to confirm the constructed model. Then the 
free vibration test was reproduced by dynamic simulation 
to predict the damping ratios of the system in the vertical 
direction. In order to evaluate the performance of the 
developed code, the dynamic simulations were also 
conducted in the same condition of the experiment and the 
predicted responses were compared with those from the 
water tank test. 

Incident 
wave 

Figure 1. Model of beam elements

In the analysis, the hydrodynamic drag and inertia coefficients were defined as the functions of 
Kevlegan-Carpenter number recommended by Offshore Standard DNV-OS-J101[8]. Here, these 
coefficients of the rectangle connecting girders were revised from the ratios of those constant values 
that was defined by Motora et al.[5] between rectangle and cylinder columns. Where the Kevlegan-
Carpenter number was simplified by the incident wave height and diameter of column by the equa-
tion (19). 

cK UT D H Dπ= =                                 (19) 

For calculating the aerodynamic force, the aerodynamic drag coefficient of 0.6, 0.6 and 1.3 was 
used for the tower, nacelle and blades respectively in the survival condition, and the rotor was mod-
eled by the axial force acting on the hub of wind turbine with thrust coefficient Ct=0.33 correspond-
ing to the operating condition. The wave particle velocities and accelerations were generated from 
the linear Airy wave potential flow function. 

Three dynamic simulations were carried out for the wave periods of 0.1~3.0s by a period incre-
ment of 0.1s, the wave height of H=2, 4 and 8cm and without wind to investigate the effect of wave 
to the dynamic behavior of floater, with wind speed U=2m/s in the operating case and with wind 
speed U=4m/s in the survival case to evaluate the effect of aerodynamic damping to floater. The in-
cident wave direction was 90 degree as shown in figure 1. Each simulation was carried out for 70s 
by a time increment of 0.05s and the first 10s time series results were omitted for the evaluation of 
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the results. The responses in surge, heave and pitch directions were output and evaluated to make 
clear the characteristics of model and for comparison with the experiments.  

3.1 Free vibration simulation 
Table 1 presents the natural periods of the floating offshore wind turbine system obtained from the 
free vibration test and those form the eigenvalue analysis using the model with the beam elements. 
The eigen-periods of surge and heave show a good agreement with the natural periods from the free 
vibration test, indicated that the eigen-period of surge corresponding to the period from mooring 
system, and the eigen-period of heave corresponding to the vertical motion. 
 
Table 2. Comparison of measured and predicted natural periods of the floating model of offshore wind turbine system 

Direction Natural periods from free vibration test (s) Periods from eigenvalue analysis (s) 
Heave (Z) 3.00 3.06 
Surge (Y) 2.87 2.82 

 
In order to evaluate the ability of the Morison equation to predict the dynamic responses of 

floater, the free vibration was demonstrated and the results were compared with the free vibration 
test. Figure 2 shows the comparison of the time series of surge and heave from the free vibration 
test and dynamic simulation. The predicted surge show a good agreement with experimental results, 
indicate that the damping force in the surge direction can be simulated well by Morison equation. 
On the other hand, the heave is overestimated by using the Morison equation and quite good 
agreement when the damping force in the equation (10) was added with damping ratio 6.0% of the 
vertical motion. 
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Figure 2. Comparison of the time series of responses from free vibration test and dynamic simulation 

3.2 Prediction of dynamic responses 
Figure 3 presents variations of normalized responses with the wave periods from numerical simula-
tion comparing with experimental results in the case without wind. As expected, the predicted re-
sponses vary linearly with the wave height in the ranges of periods far from the eigen-periods. But 
the predicted responses, specially, surges normalized by wave heights show significant peak around 
the eigen-period, decrease significantly when wave heights increase, and those show a good agree-
ment with experimental results.  

To investigate these characteristics, the forces in the equation (16) normalized by wave heights 
were calculated. Figure 5 and 6 present the time series of the forces in the surge direction with the 
incident wave height of H=2cm, 4cm, 8cm and wave period of T=2.0s, 2.8s, where the FM, FC, FK 
are the first, second and the third term of the left side of equation (16) as the inertia force, damping 
force and restoring force respectively. Here, the wind load FW is zero. 

In the case of wave period 2.0s, the contributions of normalized forces in the equation (16) are 
almost the same in the cases of wave height H=2cm, 4cm and 8cm. In addition, the damping and 
hydrodynamic drag forces are small enough to be neglected in comparison with other ones. There-
fore, the equation can be linearized by the wave height, and the predicted surges will be linear with 
the wave height in the wave period of 2.0s corresponding to the period far from the eigen-periods.  

On the other hand, the normalized inertia and restoring forces decrease, the hydrodynamic drag 
forces increase with the incident wave heights in the case of wave period 2.8s corresponding to the 
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eigen-period of surge. It indicated that the contributions of hydrodynamic drag forces are large, and 
the equation (16) cannot be linearized by the wave height in the case. 

Therefore, the normalized surges do not depend on the wave height in the wave periods far from 
eigen-periods, because the hydrodynamic drag forces are small enough. But they decrease around 
the eigen-periods due to the increase of the hydrodynamic drag forces with the incident wave 
heights in wave periods. 
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Figure 3. Variations of normalized responses with the wave periods from numerical simulation comparing with experi-
mental results 
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Figure 4. Time series of forces acting on the model in surge direction (T=2.0s) 
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Figure 5. Time series of forces acting on the model in surge direction (T=2.8s) 

4 THE CHARACTERISTICS OF DYNAMIC RESPONSES OF SEMI-SUBMERSIBLE 
FLOATER 

4.1 The effect of hydrodynamic damping 
As mention above, hydrodynamic drag force is an important factor to simulate the critical peak 

responses of floating structures. Figure 6 shows the variations of normalized surge with the wave 
periods using different hydrodynamic drag coefficients as zero (Cd=0), constant (Cd=costant) and 
a function of Kevlegan-Carpenter number(Cd=f(Kc)) comparing with experimental results. When 
the wave period closes to the resonance period, the predicted surge is overestimated when the hy-
drodynamic drag coefficient is zero, and underestimated when the coefficient is constant. However, 
the predicted surge shows a good agreement with experiment when the hydrodynamic drag coeffi-
cient is the function of Kevlegan-Carpenter number. 
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4.2 The effect of aerodynamic damping 
To investigate the effect of wind turbine to floater, a dynamic simulation was also carried out with 
the wind speed U=2m/s and 4m/s corresponding to the operating and survival condition, respec-
tively. Figure 7 presents the predicted amplitude of normalized surge without wind and with wind. 
As the experiment [3], around the resonant point, the predicted peak responses at the wind speed 
U=2m/s are less than those without wind, and the effect of the aerodynamic damping is more sig-
nificant for the cases with smaller wave height having lower hydrodynamic damping. It indicates 
that the surges around resonant point will be overestimated when the interaction between wind tur-
bines and floater are neglected, which be done in the conventional numerical models. 
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Figure 7. Effect of wind on response of floater 

4.3 The effect of elastic deformation 
To investigate the effect of elastic deformations to the dynamic response of the floater, a floating 
offshore wind turbine system model with the beam elements was constructed for a rigid model and 
an elastic model using the structural properties of the prototype floater including the number ele-
ments and nodes as the same as those of the model in the previous section. The SM570 steel mate-
rial defined by Architecture Institute of Japan [10] was used for the connecting girder and other of 
sections were rigid in elastic model.  

Table 3 shows the eigen-periods of the models. The eigen-period 26s corresponding to the moor-
ing system, and the eigen-period 28s and 25s corresponding to the vertical motion were estimated in 
both rigid and elastic model. However, there are other eigen-periods that were only obtained from 
the deformation of elastic model. 
 
T able 3. Comparison of eigen-periods between the elastic and rigid model. 
No 1 2 3 4 5 6 7 8 9 10 11 12 
Eigen-periods of  
Rigid Model T(s) 

28 26 25 - - - - - - - - - 

Eigen-periods of   
Elastic Model T(s) 

28 26 25 11.8 9.8 6.3 6.0 4.3 3.6 3.5 3.2 2.8 

Mode characteris-
tics 

Mode shapes from the moor-
ing and restoring forces Mode shapes from the deformation of elastic model 

The dynamic simulations of both models were also performed in the regular wave periods from 
1.0s~30.0s with the wave height of 12m in the survival condition. The structural damping ratio of 
floater was 0.8% for the steel material as mentioned by Burton et al.[11], and damping ratio of the 
vertical motion was 6%. The incident wave direction was -90 degree. Figure 8 and 9 presents the 
variations of normalized responses with the wave periods of the elastic model comparing with rigid 
model at the central floater and upstream base floater, respectively. 

The surge of the elastic model is the same with those of rigid model. On the other hand, the peak 
of heave can be found at the periods near 10s and 6s, corresponding to the eigen-periods of the 
mode at the deformation of elastic model. However, the normalized heave of rigid and elastic model 
are in agreement when the wave period is far from these periods. It indicated that, the responses and 
stresses would be underestimated when the model was assumed to be a rigid body without any elas-
tic deformation. 
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Figure 8. Variations of normalized responses with the wave periods of the elastic model comparing with rigid model at 
the central floater 
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Figure 9. Variations of normalized responses with the wave periods of the elastic model comparing with rigid model at 
the downstream base floater 

5 SUMMARY AND CONCLUSIONS  

A FEM code was developed for the analysis of dynamic responses of the floating offshore wind tur-
bine system in consideration of the interaction between the wind turbines and the floater. The pre-
dicted responses showed good agreement with the experiments, indicating the hydrodynamic damp-
ing play an important role at the resonant points and the hydrodynamic coefficients should be the 
function of Kevlegan-Carpenter number. In addition, the responses will be overestimated without 
considering the interaction between wind turbines and floater .The dynamic responses of rigid and 
elastic floater were also investigated, and the results indicated that the responses of elastic model 
showed some peaks around the eigen-periods of elastic deformation that would not be observed in 
the assumption of rigid without any elastic deformation. 
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