
A Physical Approach to Wind Speed Prediction 
for Wind Energy Forecasting 

Safat AL-DEEN a, YAMAGUCHI Atsushi b, ISHIHARA Takeshi c 
 

aDepartment of Civil Engineering, School of Engineering, The University of Tokyo 
5-8-1, Hongo, bunkyo-ku, Tokyo. Japan. 

b,cInstitute of Engineering Innovation, School of Engineering, The University of Tokyo 
 2-11-16, yayoi, bunkyo-ku, Tokyo. Japan. 

 
ABSTRACT: In this study mesoscale meteorological model and CFD model was used to downscale the nu-
merical weather prediction (NWP) data and verified at Hachijo Jima wind power plant. To reduce the compu-
tational cost of mesoscale model, coefficient matrix method was proposed. Following results were obtained. 
The root mean square error (RMSE) was reduced to 3.1m/s and 2.8m/s by mesoscale and CFD model respec-
tively from 5.7m/s of original NWP. The coefficient matrix method reduced the computational time to a few 
seconds by one PC from two hours by parallel computers with 8CPUs without increasing the prediction error. 
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1 INTRODUCTION 
For electric power supply system, good agreement between demand and supply is essential. But in case of 
wind energy it is difficult to know the power output fluctuation in advance as it fluctuates with wind speed. 
This uncertainty causes problem in demand and supply planning for electric power and in real time electricity 
supply operation everyday. In countries with high wind energy penetration like Denmark and Germany, the 
day ahead forecast and the daily forecast of wind energy output are carried out based on the numerical weather 
prediction data and online measurement of the wind energy output.1) 

However, operational models use statistical methods somehow, which means the power prediction is based 
on the past experience on the relationship between the prediction and measurement. This approach is efficient 
when past measurement data is available. On the other hand, the needs for the wind power prediction exist at 
the beginning of the operation of a new wind farm or even before the construction of the wind farm. In such 
cases, physical approach is needed, in which wind speed is predicted by physical model without using any past 
measurement data.  

In this study, a physical model based wind speed prediction system was developed for online power predic-
tion and verified by the anemometer located at the nacelle of the wind turbine at the Tokyo Electric Power 
Company Hachijo Jima wind power station. 
 
2 PHYSICAL DOWNSCALING MODEL 

Local wind is strongly affected by local topography and roughness. In the statistical approach, which is 
widely used in the operational forecast models in Europe, this local effect is taken into account by using meas-
urement data at the site. On the other hand, in the field of wind resource assessment, where no onsite meas-
urement data is available, downscaling of wind using mesoscale model and CFD based micro scale model was 
widely used. In this case, these mesoscale model and CFD based micro scale model is applied to downscale 
numerical weather prediction data. 

2.1 Downscaling using mesoscale meteorological model 
In this study, Japan Meteorological Agency Regional Scale Model (JMA-RSM) was used as the numerical 

weather prediction. JMA-RSM has the forecast horizon of 51 hours and can be used for the day-ahead fore-
cast. However, its spatial resolution is 20km, which is too coarse to take the effect of local topography and 
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roughness into account. To take the effect of local terrain into account, mesoscale model RAMS2) was used. 
Figure 1(a) shows the computational domain for the model. Three step nesting grids are used and horizontal 
resolution of 1km was used as the finest grid. This computation takes approximately two hours using 8 CPUs. 
 

mesh mesh mesh             
(a) (b) (c) 

Figure 1  (a) Nested grids used in mesoscale meteorological model RAMS. (b) Course terrain and computational 
grids used in MASCOT. (c) Fine terrain and computational grids used in MASCOT 

2.2 Downscaling using CFD based model 
The terrain in Japan is generally very complex and it is mentioned that 10m spatial resolution is needed to 

accurately take the effect of local terrain into account. Usually, downscaling of local wind up to 10m is carried 
out by CFD based Model. In this study, CFD based non-linear model MASCOT3) (Microclimate Analysis 
System fro COmplex Terrain) was used. 

Mascot calculates the speed up and the change in wind direction relative to upstream virtual region, where 
topography is flat and roughness is constant, for 16 wind direction sectors. In this study Idealizing and Realiz-
ing Approach (IRA) 3 was used to downscale the predicted wind speed by mesoscale model. In this method lo-
cal wind speed was estimated by correcting the difference between the effects of course terrain used in the 
mesoscale model and real terrain. First a simulation by MASCOT was performed with the course terrain and 
roughness (figure 1b) used in mesoscale simulation and speed up ( )c IC θ  and the change in the wind direc-
tion relative to the upwind virtual terrain as functions of upwind wind direction Iθ  are calculated. From 
these, wind speed at upwind virtual region was estimated by: 

/ ( )I R c Iu u C θ=  (1) 
where, Ru  is the predicted wind speed by mesoscale model. Then, another MASCOT simulation with 
real terrain and roughness (figure 1c) was performed and resulting speed up ( )F IC θ  and the change in 
wind direction were determined. Then local wind speed is estimated by: 

( )L I F Iu u C θ=  (2) 

2.3 Results 
Figure 2 shows the root mean square error (rmse), defined by equation (3), of the prediction of wind speed 

at the wind turbine for JMA-RSM, RAMS and MASCOT. 

( )2Pred Measrmse u u= −  (3) 

where, Predu  and Measu denotes predicted and measured wind speed respectively. Obviously, by using RAMS 
root mean square error was reduced for all the season compared to original numerical weather prediction by 
JMA-RSM. For all the four seasons, by using RAMS the rmse was reduced to 3.1m/s from 5.7m/s. By using 
MASCOT, rmse is further reduced to 2.8m/s. 

To investigate the source of these errors, RMSE can be split into three parts, i.e. bias, bias of standard 
deviation (sdbias) and dispersion (disp).  

2 2 2 2rmse bias sdbias disp= + +  (4) 
Pred Measbias u u= −  (5) 

( ) ( )Pred Meassdbias u uσ σ= −  (6) 
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( ) ( ) ( )( )Pred Meas Pred Measdisp 2 1 ,u u r u uσ σ= −  (7) 

Here, ( )Preduσ  and ( )Measuσ  denotes standard deviation of predicted and measured wind speed and 
( )Pred Meas,r u u  denotes the cross-correlation coefficient between the measured and predicted wind speed. 

The bias accounts for the difference between the mean values of prediction and measurement, bias of standard 
deviation shows the accuracy of prediction of the variability and dispersion accounts for the contribution of 
phase error. 

Table 1 shows the rmse, bias, sdbias and disp for wind speed by JMA-RSM, RAMS and MASCOT. It was 
clear that the main contribution of reduction of error by RAMS and MASCOT is bias. By the prediction of 
MASCOT, the bias is reduced to almost 0, i.e. mean wind speed is very well predicted by MASCOT. On the 
other hand dispersion, which accounts for the phase error, is only slightly reduced by RAMS and MASCOT, 
implying the difficulty of reduction of phase error. 
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Figure 2 Root mean square error of predicted wind speed by JMA-RSM, RAMS and MASCOT. 

Table 1 Root mean square error and its components of predicted wind speed by JMA-RSM, RAMS and MASCOT 
Forecast Type Month RMSE Bias SD_bias DISP Month RMSE Bias SD_bias DISP

RSM Data 4.06 2.62 1.06 2.91 6.70 5.26 2.78 3.08
RAMS 3.35 1.67 0.53 2.86 3.77 2.39 1.35 2.59

MASCOT 
2004/05

2.84 0.73 0.23 2.81 
2004/10

2.90 0.17 0.89 2.75
RSM Data 4.59 3.29 1.82 2.63 6.88 5.49  2.62  3.22 

RAMS 2.56 1.69 -0.18 1.92 3.19 1.12  0.78  2.88 
MASCOT 

2004/07
2.25 0.14 -0.93 2.05 

2005/01
3.28 -1.74 -0.25 2.77

 
3 THE COEFFICIENT MATRIX METHOD 

Downscaling by mesoscale meteorological model RAMS requires significant computational effort and 
time. For online applications, computational time is an important factor. To reduce the computational time, a 
coefficient matrix method is developed.  

3.1 Basic idea 
The basic idea of coefficient matrix method is that the relationship between wind speed predicted by rams 

and original JMA-RSM model can be expressed as a simple function of some parameters. In this study the re-
lationship shown in equation (8) is assumed. 

( )RAMS RSMu k uθ ε= × +  (8) 
Here, RAMSu and RMSu denote wind speed predicted by RAMS and JMA-RSM respectively, ( )k θ  de-
notes coefficient matrix as a function of predicted wind direction θ  by JMA-RSM and ε  denotes error 
term. This assumption is based on the idea that the speed up by local terrain is only the function of wind direc-
tion. Figure 3 (a) shows the relationship between RAMSu and RMSu  for SSW wind. It can be seen that the 
assumption in equation (8) is adequate. In this study, ( )k θ  is estimated using the past data of predicted wind 
speed by RAMS and JMA-RSM so that the square of the error ε  become minimum. Figure 3 (b) shows the 
estimated coefficient matrix.  
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Figure 3  (a) The relationship between wind speed predicted by JMA-RSM (x-axis) and RAMS (y-axis) for SSW 

wind. (b) Estimated coefficient matrix at Hachijo Jima wind pwer plant. 

3.2 Results 
Coefficient matrix method is applied to the prediction of the wind speed at Hachijo Jima wind power plant. 
Figure 4 shows the predicted wind speed at May 2005 by coefficient matrix method and RAMS. Obviously 
both prediction shows similar wind speed. Table 2 shows the rmse and its components discussed in last sec-
tion. There is no significant difference between those predictions. 
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Figure 4 Measured and predicted wind speed by RAMS and coefficient matrix method in May 2004 

Table 2 Root mean square error and its components of predicted wind speed by RAMS and coefficient matrix method 

Forecast Type Month RMSE Bias SD_bia
s DISP Month RMSE Bias SD_bias DISP

RAMS 3.35 1.67 0.53 2.86 3.77 2.39 1.35 2.59
Transfer Coefficient 2004/05 2.90 0.94 0.47 2.70 2004/10 3.74 2.26 1.45 2.61

RAMS 2.56 1.69 -0.18 1.92 3.19 1.12 0.78 2.88
Transfer Coefficient 2004/07 2.37 1.00 0.30 2.13 2005/01 3.31 1.47 1.09 2.76

` 

Although there is no significant difference in accuracy, the reduction of computational cost is significant. 
The computational time was reduced to a few seconds by 1 PC from two hours by parallel computer with 
8CPUs. 

4 CONCLUSION 

In this study mesoscale meteorological model and CFD model was used to downscale the numerical weather 
prediction (NWP) data and verified at Hachijo Jima wind power plant. To reduce the computational cost of 
mesoscale model, coefficient matrix method was proposed. Following results were obtained.  
1) The root mean square error (RMSE) was reduced to 3.1m/s and 2.8m/s by mesoscale and CFD model re-

spectively from 5.7m/s of original NWP.  
2) The coefficient matrix method reduced the computational time to a few seconds by one PC from two 

hours by parallel computers with 8CPUs without increasing the prediction error. 
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