‘PREDICTION OF AEROELASTIC VIBRATION OF RECTANGULAR
CYLINDERS BY k-£¢ MODEL

By K. Shimada' and T. Ishihara?

ABSTRACT: The applicability of the k-& model in the prediction of aerodynamic force and instability is inves-
tigated herein. To show that two-dimensional analysis by the k-€ model is different from ordinary two-dimen-
sional analyses that simply neglect the spanwise velocity, an analysis of the aeroelastic vibration of a cross
section with B/D = 2.0 is performed first using the latter method. In this case, motion-induced vortex oscillation
was successfully simulated; however, galloping, in which the flapping motion of the separated shear layer plays
an important role, could not be simulated. The result shows that physically reasonable flows can not be obtained
by ordinary two-dimensional analyses, unless the spanwise momentum diffusion is incorporated correctly. On
the other hand, the k-e model, which incorporates this diffusion process by an eddy viscosity, enables two-
dimensional analyses even in the high Reynolds number region. In this paper, applicability of the model is
examined for rectangular cross sections with a wide range of B/D ratio, i.e., 0.6 = B/D = 8.0. Various typical
aerodynamic features calculated using this model were found to be in good agreement with those obtained
experimentally, particularly including discontinuities in Strouhal number at the critical cross sections of B/D =
2.8 and 6.0. Based on this result, an elastically supported B/D = 2.0 cylinder was analyzed. The motion-induced
vortex oscillation and a coupling of the vortex-induced oscillation and galloping were successfully simulated,

and their values were in good agreement with those measured in experiments conducted earlier.

INTRODUCTION

Since an elongated rectangular cross section is a common
and basic configuration found in many structures, such as tall
buildings and bridges, it is important in terms of their aero-
dynamic design to investigate in detail the aerodynamic char-
acteristics of cylinders with rectangular cross section. In bod-
ies with such cross sections, the separated shear layer, which
is generated at the leading edge, plays an important role in the
production of aerodynamic forces. The behavior of the shear
layer separated from the windward corner and vortices shed-
ding into the wake is dependent on the B/D ratio, where B =
length along the direction of flow and D = depth of the section.
Therefore, it is widely recognized that the drag coefficient, the
lift coefficient, and the Strouhal number, which is defined as
a periodicity of the shedding vortex, all vary with the B/D
ratio (Nakaguchi et al. 1968).

As the aerodynamic behavior of cylinders with a rectangular
cross section is characterized by the occurrence of a reattached
shear layer, their behavior is classified into two categories,
“separated’” and ‘“‘reattached’’ types, according to the B/D ra-
tio. In “separated-type’” cross sections, Karman-type vortex-
induced vibration and galloping occur; in “reattached-type’’
cross sections, motion-induced vortex oscillation and torsional
flutter are observed.

Vortex-induced vibration is of particular interest from the
practical viewpoint, since it occurs at a-relatively lower range
of windspeeds. A mathematical model represented by a wake
oscillator model was proposed by Tamura and Shimada (1987)
for representing the Karman-vortex type of vortex-induced vi-
brations. However, when it comes to motion-induced vortex
oscillations, though prediction of the onset velocity of the ex-
citation is possible (Shiraishi and Matsumoto 1982), there are
no effective methods that can predict its response. In recent
years, attempts have been made to tackle this kind of high
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Reynolds number aerodynamic problem, which is involved
with large-scale separation and reattachment by means of
methods that solve the Navier-Stokes equation numerically.

The numerical procedures presently applied for this purpose
are largely classified into two categories. In one, direct nu-
merical simulations are used to solve the Navier-Stokes equa-
tion directly; in the second, some type of averaging of the
Navier-Stokes equation is performed. The averaged Navier-
Stokes equation method is itself classified into one employing
a subgrid scale model and another known by its acronym as
the RANS (Reynolds-Averaged Navier-Stokes) equation
model. Direct numerical simulation and the aforementioned
method employing the subgrid scale model are both examples
of 3D analyses, and in both methods it is necessary to use at
last 10-20 grid points in the direction perpendicular to the
flow. One thing common to these methods is that their results
are meaningful only when a sufficient spatial resolution is em-
ployed; therefore, these methods are memory intensive and
require a lot of processing time.

On the other hand, the RANS model enables two-dimen-
sional computations even in flows with high Reynolds num-
bers. This is possible based upon the hypothesis that, if the
spanwise turbulent fluctuation is supposed to be homogeneous,
the spatial average of its fluctuation in the spanwise direction
is equivalent to its ensemble average. Based on this hypothe-
sis, Franke and Rodi (1991) showed that the Strouhal number
and mean drag coefficient of a square cylinder in a smooth
flow are reproduced well by an unsteady 2D analysis using
the Reynolds stress equation model in combination with a wall
function. They also showed that if the conventional standard
k- model is used in combination with a wall function in an
unsteady 2D analysis, vortex shedding is not simulated. Mu-
rakami et al. (1990) pointed out that the inability to reproduce
vortex shedding is caused by an excessive production of tur-
bulent kinetic energy, which is an artifact of the isotropic eddy
viscosity model. To remove this defect, Kato and Launder
(1993) used the property of irrotationality of the flow at the
impinging region and proposed a modified k-€¢ model in which
production of turbulent kinetic energy is expressed in terms of
a vorticity tensor and a velocity strain tensor. They then ap-
plied this model to a square cylinder and were able to obtain
vastly improved predictions of aerodynamic characteristics and
turbulence statistics. Later, Kato (1997) showed that satisfac-
tory results were obtained with respect to the unsteady wind
force and vortex-induced vibration of a square cylinder by



using the modified k-€ model combined with a wall function,
even with a relatively low spatial resolution. Using the Bald-
win-Lomax model, Deng et al. (1994) obtained satisfactory
results with respect to aerodynamic and turbulence statistics
of a square cylinder. Similarly, Lee (1997) calculated the flow
past a square cylinder by using the standard, RNG and the
low-Reynolds number k-€ model to evaluate the sensitivity of
various parameters such as time accuracy, spatial accuracy, and
choice of convection schemes. Bosch and Rodi (1998) made
detailed computations using the modified k-€ model by Kato
and Launder and discussed various inflow boundary condi-
tions. They showed that the performance of the model could
be further improved by the proper inflow boundary condition.

So far, the above applications of the RANS model have
been tested only for square cross sections. In the case of rec-
tangular cross sections, there are many aerodynamic phenom-
ena that should be examined from a numerical model point of
view. One example of such a phenomenon is the well-known
double mode in the lift fluctuation due to unsteady reattach-
ment of the separated shear layer on the side surfaces for cross
sections with 2.0 < B/D < 2.8 (Okajima 1983). Another ex-
ample is the discontinuities in Strouhal number that are evident
at B/D = 2.8 and 6.0. Problems like these pose a tremendous
challenge to the development of numerical simulation of flow
with large-scale separation. Therefore, it is also important for
a further development of the RANS model to verify its ability
to reproduce these phenomena. In this paper, a modified k-€
model is treated as a representative of the RANS model, and
its applicability in simulating the aerodynamic characteristics
of stationary rectangular cross sections with B/D ratio lying in
the range 0.6 = B/D = 8.0 in smooth flow is investigated
(Shimada and Meng 1998). Then, depending on its suitability,
its application to the prediction of the aeroelastic behavior of
a B/D = 2.0 cross section is discussed. In particular, to show
that 2D analysis using the k-€ model is fundamentally different
from an ordinary 2D analysis, which simply neglects the span-
wise velocity, an analysis by the latter method is demonstrated
for comparison.

DIRECT NUMERICAL SIMULATION (CASE1)
Analytical Method

Numerical analysis in CASEI1 is based on solving the time-
dependent incompressible Navier-Stokes equation, (1)—(2), by
the finite-difference method:

u,+uVu=—p+ R 'Vu 1)
Vou=0 2)

All spatial derivatives are discretized by second-order central
differencing except for the convective term. For the convective
term, a third-order upwind scheme proposed by Kawamura
and Kuwahara (1984) is employed to stabilize the high Reyn-
olds number numerical instability that arises from the nonlin-
ear effect of the convective term:

du (U2 + Buiy — 8Buyey + uy)

oo ¢ 12A%

Wiy — Aty + 60, — duiy + uip)
4Ax 3

+ el

In the time-marching algorithm, which follows the Marker and
Cell method originated by Harlow and Welch (1965), the con-
tinuum equation is incorporated by solving first the Poisson
equation for pressure and subsequently the momentum con-
servation equations for the respective velocity components us-
ing the updated pressure. Time advancement is done by an
implicit first-order Euler scheme. In particular, when one con-

siders the simulation to extend to the realm of aeroelastic vi-
brations, it is necessary to advance the time from about some
hundreds to a thousand of the reduced time; therefore, time
advancement in an explicit manner is not a reasonable choice.
Keeping these points in mind, in the present calculation it was

. decided to proceed with the calculation in a stable manner so

as to be able to simulate vortices that are as large as the Kar-
man vortex, rather than attempt to precisely reproduce the tur-
bulence statistics.

To evaluate the aerodynamic force accurately, the flow
structure in the immediate vicinity of the cylinder where steep
gradients exist in the physical quantities must be finely re-
solved, and the behavior of the separated shear layer needs to
be captured as correctly as possible. This is achieved by in-
corporating a generalized curvilinear coordinate system (a
body-fitted coordinate system) so as to be able to concentrate
a sufficient number of grid points near the boundary.

The physical analytical domain is a circle of 30D in radius.
The cylinder itself is located slightly upstream (—5D) from
the center of the domain. The approaching flow is assumed to
be smooth and uniform. On the surface of the solid boundary,
a no-slip boundary condition is imposed for each velocity
component. A Dirichret boundary condition of p = 0 is im-
posed on the remote boundary, and a Neumann boundary con-
dition dp/dn = 0 is imposed on the solid boundary. The Reyn-
olds number is chosen to be R = U.D/v = 10*

The Runge-Kutta method is used for solving the equation
of motion of the cylinder. The Scruton number, which is de-
fined as Sc = 2md/(p,BD), where m, d, and p, = mass per unit
length, logarithmic decrement, and air density, is selected such
that its value is 2. Reduced velocity is defined as Ur = U../
(noD), where n, = natural frequency of the cylinder. In general,
N is fixed in the experiment, but U., is allowed to vary. How-
ever, in the analysis, in order to exclude the Reynolds number
dependency and to keep the Reynolds number constant, the
reduced velocity is adjusted by varying the natural frequency
of the cylinder. In the following discussion, two-dimensional
and three-dimensional analyses using the CASE1 procedure
are referred to as CASE1-2D and CASE1-3D, respectively. In
the following section, analysis of the motion-induced vortex
oscillation using the two-dimensional analysis scheme of
CASE1-2D (Shimada 1995) is described in detail for compar-
ison with the k-€ model (CASE2).

Aeroelastic Vibration of B/D = 2.0 Rectangular
Cross Section

Flow Pattern around Vibrating Cylinder

The process of vortex formation is of particular interest for
understanding the mechanism of vortex-induced vibration. Fig.
1 illustrates a typical pattern of the instantaneous vortical

Coalescence and shedding of vortices
Separated vortex from leading edge

Advection of separated vortex

FIG. 1. Vortical Structure around Elastically Supported B/D =
2.0 Cross Section in Smooth Flow at Motion-Induced Vortex Os-
cillation
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structure created around a transversely oscillating cylinder.
The three primary processes that make up the vortical structure
are: (1) formation of the leading edge separation vortex; (2)
advection of the vortex along the side surface; and (3) coales-
cence with the secondary vortex at the trailing edge and shed-
ding of the vortices. Fig. 2 demonstrates the unsteady vortic-
ities during a typical half period of successive oscillation. In
the figure, the development process of the separated shear
layer is followed by a series of consecutive numbers.

At first, the separated shear layer at the leading edge is
enhanced by the transverse oscillation of the cylinder, and vor-
ticity is concentrated gradually in the separation bubble near
the leading edge, consequently forming the leading-edge sep-

(@)

(b)

(c)

(d)

FIG. 2. Vortex Formation Process of Elastically Supported B/
D = 2.0 Cross Section in Smooth Flow during Half Cycle of Os-
cillation at Ur=5.0: (a) t=0; (b) t=0.6; (c) = 1.2; (d) t=1.8; (e) ¢
=24
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arated vortex (al—a7). It then travels downstream across the
side surface of the cylinder (a8—a9). At this stage, the vorticity
is highly concentrated. Concurrently, at the opposite corner of
the trailing edge, a secondary vortex is seen to be induced
(b1-b5) that coalesces with the advecting vortex in the wake
of the cylinder [Fig. 2(e)], at which time, the amplitude of the

- oscillation reaches almost is maximum value. These merged

vortices are then shedded into the wake and form alternate
vortex streaks. At the reduced velocity corresponding to Ur =
5.0, which is near the resonant peak of the vortex-induced
vibration, the vortex shedding its very stable. This flow for-
mation cycle is completed in one period of oscillation of the
cylinder, and the vortex shedding is seen to be almost com-
pletely synchronized with the motion of the cylinder.

Response

Fig. 3 is a comparison of the numerical results obtained
using the CASE1-2D procedure and experimental results from
various wind tunnel tests that were carried out over a range
from Sc = 1.6 to 3.0 (Washizu et al. 1978; Miyazaki 1982;
Shiraishi and Matsumoto 1982; Yamada et al. 1982; Utsuno-
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0.05

10

Reduced Velocity Ur

< = Shiraishi and Matsumoto (1982); Sc = 2.0

A\ = Shiraishi and Matsumoto (1982); Sc = 2.2

Y = Yamada et al. (1982); Sc = 2.0

O = Miyazaki (1982); Sc = 3.0

O = Utsunomiya et al. (1984); Sc = 2.0

© =Takeda and Kato (1992) (Forced Oscillation 2D
Calculation: Ur =5.0, ¥/D =0.1); Sc = 1.6

® = CASE1-2D Calculation by Shimada (1995) (Elastically
Supported 2D Calculation: Ur = 5.0, ¥/D =0.114); Sc =2.0

FIG. 3. Motion-Induced Vortex Oscillation of B/D = 2.0 Rectan-
gular Cross Section



miya et al. 1984; Takeda and Kato 1992). The large scatter
seen in the experimental results can be attributed in large mea-
sure to slight differences in the setup conditions of the various
tests, for example, the blockage effect and damping. However,
all experimental data series show the same tendency; that is,
the excitation commences at Ur = 3.0, the resonant peak oc-
curs around Ur = 5.5, and then the amplitude decreases dras-
tically at Ur = 7.0. The computed results are comparable to
these experimental results, and the characteristic of the vortex-
induced vibration, which is observed over a limited range of
reduced velocity, can be recognized.

Unsteady Surface Pressure

Unsteady surface pressure acting on the moving cylinder is
usually random, and its two dominant components are the
Strouhal component and the natural frequency response com-
ponent. The latter is primarily important for its contribution to
the amplification of vibration. The displacement at Ur = 5.0
is seen to be almost sinusoidal. If the displacement is ex-
pressed as y(£) = R[Y, exp(iwyt)], where Y, and w, = amplitude
and circular frequency of the oscillation, the natural frequency
response component Cp, can be decomposed as follows
(Washizu et al. 1978):

Cps(1) = R[(Cpr + iCp))- €] “)
Cpr = |Cpa)o| ‘cos B,, Cp;= ICP%‘ -sin B, &)
G
Coul = VT T G B (2)
R

The unsteady pressure distributions of the natural frequency
response component along the surface of the cylinder are il-
lustrated in Fig. 4. The phase lag 8, and Cp, are shown in
Figs. 4(a and b), respectively. In these figures, the experi-
mental results of forced oscillation by Miyata et al. (1983) and
numerical results of forced oscillation by Tamura and Kuwa-
hara (1989) are also shown for comparison. The phase lag B,
obtained using the CASE1-2D procedure varies from a nega-
tive value at the windward region to a positive value at the
leeward region and is in good agreement with the experimental
data. Similarly, the computed Cp,, which are negative at the
windward side and positive at the leeward side of the surface,
i.e., the damping force and the excitation force, respectively,
are in good agreement with the forced oscillation results.

Simulation of Stationary Rectangular Cylinders

Thus, as shown above, the motion-induced vortex-oscilla-
tion can be simulated well even by an ordinary two-dimen-
sional analysis such as the CASE1-2D procedure, in which the
spanwise velocity component is simply neglected. This is one
of a few cases in which the CASE1-2D procedure works suc-
cessfully in high Reynolds number problems. In the above
case, strong disturbance caused by the enhancement of a vor-
tex at the leading edge makes the flow nearly two-dimensional.
However, flow around a body of rectangular cross section is
two-dimensional at a relatively low Reynolds number, for
which the spanwise momentum transfer seems to be negligi-
ble. As the Reynolds number becomes higher, three-dimen-
sionality kicks in. As a result, remedies in numerical proce-
dures to cope with the physical momentum diffusion in the
direction of the span are required for these procedures to be
realistic. Consequently, prediction of aerodynamic character-
istics of stationary cylinders by the CASE1-2D procedure was
not successful, nor was the galloping, in which the flapping
motion of the separated shear layer plays an important role.

Using one numerical remedy; the CASE1-3D procedure,
comparisons are made in Fig. 5 of calculated and observed

180
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B (deg)

-1 -0.5 0 0.5 1

-0.5 MM
1 E’Cﬁ
-1 05 - 0 0.5 1
(b) . xD

0O = Miyata et al. (1983) (Forced Cillation 2D Calculation:
Ur=5.0, Y/D=0.1)

/\=Tamura and Kuwahara (1989) (Forced Oscillation 2D
Calculation: Ur=5.0, YD =0.1)

O = CASE1-2D Calculation by Shimada (1995) (Elastically
Supported 2D Calculation: Ur=5.0, Y/D =0.12)

FIG. 4. Unsteady Surface Pressure of B/D = 2.0 Rectangular
Cross Section: (a) Phase B,; (b) Cp,

aerodynamic characteristics of some stationary rectangular cyl--
inders in smooth uniform flow. At B/D = 3.0, a discontinuity
in the Strouhal number is found to be successfully simulated
by the numerical procedure. Fig. 6 shows the instantaneous
vorticity w, of B/D = 2.0 and B/D = 3.0 cross sections. In the
B/D = 2.0 cross section, since the separated shear layer sur-
rounds the body and the Karman vortex is formed in the wake
apart from the cross section, the Strouhal number shows small
value. On the other hand, in the B/D = 3.0 cross section, which
demonstrates Strouhal jump, the separated shear layer reat-
taches onto its side surfaces. The CASE1-3D procedure, which
incorporates the spanwise momentum diffusion process, repro-
duces well these details of the flow. Tamura and Ito (1995,
1997) investigated the aerodynamic characteristics of rectan-
gular cross sections with various B/D ratios using a similar
method, and the ability of the procedure has been demon-
strated in the literature.

Note that, in general, in the evaluation of aeroelastic vibra-
tion it is necessary to perform a calculation by hundreds of
reduced time to obtain statistically converging responses. As
a consequence, an enormous computational time is required
even when using 2D analysis. Therefore, from the point of
view of practical use it is not a reasonable choice to perform
the computations using 3D direct simulations, since in prac-
tical applications it would be required to investigate for vari-
ous reduced velocities in addition to changing mechanical
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FIG. 5. Aerodynamic Characteristics of Rectangular Cylin-
ders Obtained by 3D Numerical Simulation: (a) Mean Drag Co-
efficient; (b) Strouhal Number

properties such as mass-damping ratio. The possibility of re-
producing aeroelastic motions of a square cross section by
properly incorporating a turbulent diffusion effect was dis-
cussed by Kato (1997). Yet so far, most of applications of the
RANS model have been confined to square cross sections. In
the following, the modified k-& model by Kato and Launder
(1993) is treated as a representative 6f RANS model, and first,
its applicability to stationary cylinders with a wider range of
B/D ratio, i.e., 0.6 = B/D = 8.0 is investigated in detail.

k- MODEL (CASE2)

Basic Equation

The Reynolds-averaged incompressible Navier-Stokes equa-
tion is expressed as

; 2 . :
DU, _ & P+_k>+i(v+v,)a_a+9g -
) ax; dx; ox;

where v, = eddy viscosity coefficient and is given as v, =
C,k’/e. Eq. (7) is reduced to 2D form if the averaging operator
d{db)/dx; = 0, which implies that the turbulent fluctuation,
which is supposed to be homogeneous in the spanwise direc-
tion, is assigned on the equation and then U, = 0 is substituted.
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(b)

FIG. 6. Vortical Structure (Vorticity »,) around Rectangular
Cylinders: (a) B/D=2.0; (b) B/D=3.0

The turbulent kinetic energy & and its dissipation rate € are
obtained by the following transport equations:

Dk 9 v\ ok

—=— +=)—=|+pP - 8

Dt ox; [(V o-k> axj] kT E ®)
De 9 v\ e €
—== + =) —=| +(C.P.— Ce) = 9
Dt~ ox, [(V ) ax,] (Cb = G ¢ ©

The empirical constants in the equation are given as C, = 0.09,
C,=144,C, =192, 0,= 1.0, and o, = 1.3, all of which are
identical to those used in the conventional standard k-& model.
Since in the case of the standard k-& model these empirical
constants are identified from temporal means of experimen-
tally measured values, justification of their application to the
present model in the sense of ensemble averaging is question-
able. However, judged from the results, as discussed later, no
uncertainties arising from these model constants were ob-
served.

P, is the production term of turbulent kinetic energy. When
the standard k-€ model is used, it is widely recognized that
excessive amounts of turbulent kinetic energy are produced
near the leading edges of the cross section. In this study, to
cope with this defect, a model proposed by Kato and Launder
(1993) is employed where



2 2
k? \/1 au, 9y, \/1 au, -y,
P=C,—\z|—+—= | === 10
y e V2 <8x, 6x,-> 2 \ox;  ox; (10)
Turbulence Model near Solid Boundary

Treatment of the turbulence model near the boundary is im-
portant for a simulation of the flow field around rectangular
cylinders that is involved with separation and reattachment. A
great many ‘works on the k-€ model have used the wall func-
tion near a solid boundary without employing a number of
grid points, for reasons of economy. However, the generalized
log-law is unsuited for flow with large-scale separation and
reattachment (Rodi 1991). Furthermore, if the wall function is
used, the effect of the Reynolds number is not precisely re-
flected. Therefore, the present analysis employs the low Reyn-
olds number one-equation model, which is from here on re-
ferred to as the “two-layer model.”” In other words, the k
equation is solved by assigning k = 0 on the solid boundary.

oU/9x=0

ok 2x=0
O e/0x=0
P=0

D Z

T
0

FIG. 7. Analytical Domain and Boundary Conditions and Grid
System near Cross Section

TABLE 1. Spatial Resolution

Instead of solving the € equation, € near the wall is determined
by the turbulent kinetic energy k using a length scale /.. The
eddy viscosity, v, in the region where the € equation is not
solved is calculated using the turbulent kinetic energy k and a
length [, as with &:

4

372
e=" W= Ck'"1, (11)
The length scale /, and [, are proportional to the turbulent eddy
scale /(= ky) and are determined using the following relations:

R, 25 C
Lo [1-en (B)] 5B 0
B N ¥

where the constants are given as C, = kC, ™, A, = 50.5, and
A" =25, In the two-layer model, since I, and [, are functions
of the turbulent Reynolds number R,(=k"*y/v), the effects of
the Reynolds number can be evaluated. The Reynolds number
is known to be important for describing the aerodynamic char-
acteristics of bodies with a curved surface, such as a circular
cylinder. Numerical studies using the two-layer model con-
ducted by Shimada and Meng (1997) were successful in sim-
ulating the variation of the drag force coefficient of a circular
cylinder with the Reynolds number. The same approach on a
near wall treatment is shown to be effective in a simulation of
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FIG. 8. Time Histories of Drag and L.ift Coefficient for Square
Cross Section (200 x 100): (a) CASE1-2D (2D Cailculation with-
out Turbulence Model); (b) CASE2
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the flow past a square prism by Bosch and Rodi (1998). In
the present calculation, the two-layer model is applied to the
region only within three meshes away from the solid boundary.
Also, to evaluate the aerodynamic forces as accurately as pos-
sible, the flow structure must be finely resolved in the imme-
diate vicinity of the regions on the cross section. To achieve
this, a generalized curvilinear coordinate system is incorpo-
rated. The above set of equations is solved by a procedure
similar to that presented in the CASE]1 calculation, except for
the convective terms in the & and ¢ transport equations, which
are discretized by the first-order upwind difference scheme.
The analytical domain is a circle with a radius of 30D, and a
rectangular cross section is placed at a distance of 5D upstream
from the center of the domain, as shown in Fig. 7. The number
of grid points used in the runs of calculation are summarized
in Table 1.

Fig. 7 also shows the boundary condition. The turbulent
kinetic energy and its dissipation rate are k = 10™5(m%s?) and
€ = 107°(m’s®), respectively. At the outlet boundary, a Neu-
mann-type boundary condition, i.e., du/dx, = 0 is assigned.
The Reynolds number is chosen to be R = U,.D/v = 2.2 X 10*
so as to be consistent with the experiment by Lyn (1989), in
which turbulent statistics around a square prism were mea-
sured in detail.

Verification of Numerical Method (B/ID=1.0)

For validation of the general applicability of the two-di-
mensional approach using the k- model and for verification
of the present numerical analysis code, its application to a B/
D = 1.0 cross section that has been investigated in detail both
experimentally and numerically is examined. In Fig. 8, time
histories of aerodynamic force coefficients obtained by the
CASE1-2D analysis, in which simply u, = 0 is imposed, and
those from the calculation employing the turbulence model are
illustrated as CASE2. The CASE2 records show an almost
sinusoidal periodic fluctuation; however, in CASE1-2D, the
fluctuations are random and their amplitudes are quite large.
Fig. 9 compares the instantaneous vorticity as calculated by
these two methods. In CASE2, an apparent Karman vortex

FIG. 9. Instantaneous Vorticity Contour around Square Cross
Section (200 < 100): (a) CASE1-2D (2D Caiculation without Tur-
bulence Model); (b) CASE2
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TABLE 2. Comparison of Aerodynamic Properties

Source - D cD | cL | st

(1) (2) @) [ @]
Franke and Rodi (RSE + w.f.) 2.15 0.383] 2.11 {0.136
Kato and Launder (M.P. k-€ + w.f) [ 2.05 = 0.03| — | 1.16 |0.145
* Present calculation (200 X 200) 2.05 0.093| 1.43 |0.141
Sakamoto et al. (Experiment) 222 0.1321 1.45 {0.134

street is formed in the wake of the cross section; however, in
CASE1-2D the shedding vortices downstream of the cross sec-
tion do not advect directly. When an approach similar to
CASE1-2D is employed, this kind of defective phenomenon
is always observed in the range of Reynolds numbers over
10, This is believed to arise from the fact that the momentum
that should otherwise be diffused in the spanwise direction by
3D turbulent mixing is unable to diffuse properly using an
ordinary 2D procedure, leading to concentrations of extremely
strong vorticity like those found in Fig. 9(a). On the other
hand, CASE?2 incorporates the turbulent diffusive effect ade-

-quately and, even at high Reynolds numbers, is successful in

simulating smooth periodic vortex shedding by avoiding an
excessive concentration of momentum.

In Table 2, aerodynamic force coefficients obtained by the
present numerical simulation are compared with some previ-
ously obtained numerical results and with the results of an
experiment conducted by Sakamoto et al. (1989). With respect
to the mean drag coefficient, the results from all the RANS
model are in reasonably good agreement with the experimental
result, although they are all slightly below the experimental
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FIG. 10. Distribution of Time Mean Turbulence Statistics on
Center Line in Flow of Square Cross Section (200 X 200); (a) U-
Component; (b) Total Fluctuation (Periodic Component + Sto-
chastic Component)
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value. However, there are some differences in the fluctuating
life coefficient. Arranged in decreasing order of magnitude, the
fluctuating lift coefficients line up as follows: Franke and Rodi
> the present calculation > Kato and Launder. To account for
this difference,. the distribution of the mean velocity and of
the total fluctuating energy, consisting of both periodic and
stochastic components, along the centerline in the wake field
is presented in Fig. 10. The size of the reversed flow region
formed behind the prism, which is described as a region in
which U/U. < 0 in Fig. 10(a), as evaluated by the present
calculation and by Franke and Rodi, is found to be excessively
narrow compared with the experimentally obtained reversed
flow region, but that obtained by Kato and Launder is larger.

Pressure Distribution on Square Cross Section: (a) Mean Pressure Distribution; (b) Fluctuating Pressure Distribution

The differences in the estimated size of the reversed flow re-
gion can be associated with the differences in magnitude of
turbulent mixing in the wake of the prism, which is illustrated
as the total fluctuating energy in Fig. 10(b). Franke and Rodi
report the largest total fluctuating energy and the highest fluc-
tuation in lift; on the other extreme, Kato and Launder report
the lowest total fluctuating energy and the lowest fluctuation
in lift. This means that the fluctuation in lift can be related to
the turbulent mixing in the wake of the prism and the size of
the wake. These observed differences might arise from the
differences in the treatment of the turbulence model near the
solid boundary and/or the convection scheme. Kato et al. sug-
gested that treatment of the turbulence model near the solid
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boundary significantly affects the turbulent statistics, as well
as the aerodynamic characteristics.

Fig. 11 shows the distributions of mean and fluctuating pres-
sure coefficients. A square cross section is classified as a sep-
arated-type cross section, and its side surfaces are completely
immersed in the separated flow region. Therefore, on the side
surface, the pressure is suction, and its distribution does not
exhibit a large variation. In Fig. 11, although the experimental
values are seen to exhibit some amount of scattering in both
the mean and the fluctuation coefficients, the present result
almost coincides with the experimental results.

Thus, for a stationary square cross section, the modified k-
€ model that is incorporated in the present analysis is seen to
lead to a satisfactory result with respect to prediction of the
aerodynamic statistics, although it provides a rather poor es-
timation of the turbulent statistics of the flow.
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FIG. 12. Variations of Aerodynamic Characteristics Accord-
ing to B/D Ratio: (a) Mean Drag Coefficient; (b) Strouhal Num-
ber; (c) Fluctuating Lift Coefficient
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Variation of Aerodynamic Characteristics with
B/D Ratio

Fig. 12 shows the mean drag coefficient, the Strouhal num-
ber St = nD/U., and the fluctuating lift coefficient for changing
B/D ratios. In the Strouhal number, frequency n is obtained

" from the predominant peaks observed in the spectrum of the

lift. In the fluctuating lift coefficient, only the periodic com-
ponent is considered. In these figures, wind tunnel experiment
results (Nakaguchi et al. 1968; Otsuki et al. 1978; Washizu et
al. 1978; Ohya et al. 1980; Okajima 1983) and results of a 3D
numerical simulation (Tamura and Ito 1995) are presented for
comparison. General features common to the measurements
and analytical results are as follows.

The mean drag coefficient shows a peak near B/D = 0.6 and
decreases monotonously as the B/D ratio increases. The Strou-
hal number exhibits discontinuities at B/D = 2.8 and near B/
D = 6.0. Experimental data on the fluctuating lift coefficient
available for comparison are limited, but they do show a ten-
dency to decrease monotonously starting at B/D = 0.6. The
results of the present numerical simulation are almost consis-
tent with both the experimental results and those of 3D nu-
merical analyses, in particular with respect to the mean drag
coefficient and the Strouhal number. As for the fluctuating lift
coefficient, the present numerical results are relatively small
in value as compared with the results of the experiment and
3D analyses. This point will be discussed in more detail later.

Instantaneous vorticity contours are illustrated in Fig. 13 to
show the flow pattern around the cross sections for the sake
of understanding the aerodynamic statistics described above.
In general, the results of an unsteady 3D analysis show small-

FIG. 13. Instantaneous Vorticity Contours around Rectangu-
lar Cross Sections with Various B/D Ratios at Maximum Lift: (a)
B/D =1.0; (b) B/D = 2.0; (c) B/D=3.0; (d) B/D = 5.0; (e) B/D=6.0;
(f) BID=8.0



scale eddy structures due to the 3D turbulent motion in the
vicinities of the boundaries of the cross sections. However, no
such small-scale eddies are visible in the output of the present
analysis, which uses the RANS model. This is because a per-
turbation such as small-scale eddies from the ensemble aver-
aged fluctuation is regarded as turbulence numerically, which
is incorporated as eddy viscosity in the equation; hence, such
small-scale eddies are obscured by the turbulent viscosity ef-
fect.

Separated-Type Cross Sections (B/D < 2.8)

In the separated-type rectangular cross sections, a periodic
and apparent vortex shedding can be observed, as illustrated
in Figs. 13(a and b). Examining the mean pressure coefficient,
it can be seen in Fig. 14 that there is no pressure recovery on
the side surface for B/D = 1.0 and 2.0.

As the B/D ratio increases up to about B/D = 2.0, the lo-
cation of the generation of the vortex behind the cross section
moves further away from the cylinder and, coincidentally, the
Strouhal number becomes smaller. Almost at B/D = 2.0, gen-
eration of the vortex behind the cross section becomes the
weakest compared with other cross sections. Fig. 15 shows a
comparison of the temporal mean streamlines for B/D = 2.0
as evaluated by the present numerical simulation and from
detailed measurements by Mizota and Okajima (1981) using
a tandem hot-wire anemometry. They showed that at B/D =
2.0, the reversed flow region is large and extends far away
downstream of the cross section. Although the wake calculated
by the present simulation is larger as compared with that mea-
sured by Mizota and Okajima, it does correspond qualitatively
with the measured wake in that the reversed flow region ex-
tends downstream of the cross section.

Reattached-Type Cross Sections (2.8 < B/D = 8.0)

At B/D = 3.0, the Strouhal number is reported to have a
value between 0.16 and 0.17, so the vortex shedding period
becomes small abruptly. This is well reproduced by the present
numerical approach, which leads to a rapid increase in Strou-
hal number up to 0.167, at which time the space of the vortex
shedding immediately becomes narrower and apparent vortex
shedding appears again. Coincidentally, the fluctuating lift co-
efficient recovers, as seen in Fig. 12(c). A separation bubble
is generated on the side surface of the cross section. The mean
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FIG. 14. Mean Pressure Distribution on Side Surface of Vari-
ous B/D Ratios

FIG. 15. Comparison of Time Mean Streamline of B/D = 2.0
Rectangular Cylinder: (a) Measurement by Mizota and Okajima
(1981); (b) Result by Present Numerical Simulation

pressure coefficient is lower on the windward side surface and
recovers on the leeward side, as seen in Fig. 14. Also, sepa-
ration bubbles are alternately generated above and below the
cross section. These tendencies are observed in every cross
section almost up to B/D = 5.0. Fig. 16 shows an example of
the periodical reattached-type cross section, for which a com-
parison of the time mean streamline is made between the re-
sults of the present numerical simulation and measurements
conducted by Mizota et al. (1981). The result of the present
simulation corresponds well with the measured data regarding
the size of the separation bubble and that of the reversed flow
region that is formed in the wake of the cylinder.

In Fig. 12(b), another discontinuity in Strouhal number can
be recognized at B/D = 6.0. In the vorticity contour at B/D =
6.0 [Fig. 13(e)] evaluated by the present numerical analysis,
though a weak motion of flow can be recognized in the wake
far away from the section, flow near and around the cross
section is almost close to being symmetrical; thus, its vortex
shedding is apparently weak compared with that of other cross
sections. At B/D = 8.0, the vortex resumes shedding from the
trailing edge of the section, as can be seen in Fig. 13(f); thus,
the Strouhal number increases again.

Mean pressure coefficients of reattached-type cross sections
with 3.0 = B/D = 8.0 evaluated using the present numerical °

3

FIG. 16. Comparison of Time Mean Streamline of B/D = 4.0
Rectangular Cylinder: (a) Measurement by Mizota and Okajima
(1981); (b) Result by Present Numerical Simulation

JOURNAL OF AEROSPACE ENGINEERING / OCTOBER 1999 / 131



simulation show that the positions of the suction peak and of
the pressure recovery are almost the same. Particularly over
the range 5.0 = B/D = 8.0, the distributions are almost iden-
tical and can be expressed by one distribution along the sur-
face. This tendency corresponds well with the results of 3D
calculations (Tamura and Ito 1995), although results are not
presented here.

Fluctuating Lift Coefficient

In the ensemble-averaged model, in the case of flows with
periodic unsteadiness, the instantaneous value of the physical
quantity ¢ can be separated as foliows (Reynolds and Hussain
1972; Franke and Rodi 1991):

dN=b+d'=b+ b+ (13)

where ¢ = time-mean value; ¢’ = deviation from time-mean
value; ¢ = periodic fluctuation; and ¢” = stochastic turbulent
fluctuation. In the calculation of the unsteady RANS model,
the ensemble averaged value, & + ¢, is directly solved from
the simulation. However, the stochastic component is evalu-
ated as its variance. Thus, the variance of the total fluctuation
is

o} =0} + ol (14)

For example, in the unsteady calculation of the k-8 model,
variance of the periodic component of velocity is evaluated as

T

1

ol = —f () dt (15)
T 0

The stochastic component of velocity is evaluated as its vari-

ance and is related to the turbulent kinetic energy k, which is

solved from its transport equation as follows:

2 U, a9y, 2
=l + = -k 16
Tui =V (axj ox; 3 (16)

However, for the pressure, its stochastic component is not
modeled explicitly in any RANS model; therefore, its total
fluctuation consists of the fluctuation only by p:

2;
PRANS

o =o0i<0; amn

Pexact

Thus, its value is always underestimated, as compared with
the exact value of its fluctuation. Since lift force is an inte-
grated value of the surface pressure, the same argument holds
in prediction of the lift fluctuation.

In separated-type cross sections, the periodic component of
the lift produced by cross-stream flapping of the separated
shear layer is predominant. Therefore, the results of the present
‘numerical simulation, which takes into account only the pe-
riodical fluctuation, almost agrees with the results of experi-
ment and 3D numerical results in which all components are
included.

Cross sections with 1.5 < B/D < 3.0 belong to the separated-
type, but the location at which the Karman vortex is generated
moves away from the cross section. Thus, as the cross-stream
flapping of the separated shear layers becomes weak and the
relative contribution of the periodic component to the total
fluctuation becomes small, the fluctuating lift coefficient ob-
tained by the present numerical simulation becomes smaller
than the experimental results.

When the B/D ratio becomes larger and reattachment of the
separated shear layer begins to occur, the relative contribution
of the stochastic component to the total fluctuation becomes
large. Therefore, as for reattached-type cross sections, a quan-
titative difference becomes noticeable. However, as there has
been no research on the characteristics of the fluctuation in the
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aerodynamic forces by dividing it into periodic and stochastic
components, it is difficult here to judge the validity of these
arguments. :

Aeroelastic Vibration of B/D=2.0 RectangUlar
Cross Section

In this section, the applicability of the modified k-& model
is extended to the prediction of aeroelastic behavior of a B/D
= 2.0 rectangular cross section based on its ability in simulat-
ing the aerodynamic behavior of stationary cross sections as
described above. The aerodynamic characteristic of a station-
ary B/D = 2.0 rectangular cross section is classified as sepa-
rated, but at the same time, it also belongs to the reattached
category, because it shows unsteady reattachment onto the side
surfaces. Therefore, this cross section exhibits both galloping
and motion-induced vortex oscillation, which are typical of the
separated-type and the reattached-type cross sections, respec-
tively. ‘

The unsteady wind force of the transversely forced oscil-
lation is examined first. Expressing the displacement of the
forced oscillation as y,(f) = R[Y,, exp(iw,2)], where ¥,, and o,
= amplitude and circular frequency of the forced oscillation,
the frequency response part C;_ can be decomposed as follows:

C, (D) = RICy, + iCy)- e 18)
Cro=|Cy|-cos Br, C,=1C,) sin B, (19
C
IC.|=VCi, + CZ, B.=tan (—Ci> 20)
Ly

In Fig. 17, the simulated unsteady wind force is demonstrated,
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lar Cross Section (Heaving Amplitude: 0.1D): (a) CL; (b) Phase
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which corresponds to the forced oscillation in the heaving
mode with an amplitude of 0.1D. C,, becomes positive in the
region near Ur = 5 and Ur > 15, at which a motion-induced
vortex oscillation and Karman vortex-induced vibration occur,
respectively. The computed results are in good agreement with
the experimental results (Washizu et al. 1973; Mizota and Oka-
jima 1975). The response amplitude of the vortex-induced os-
cillation is dependent on the Scruton number; however, in the
galloping it is dependent also on the mass ratio according to

the quasi-steady theory (Parkinson 1964). Therefore, to com- -

pare the results in the regions from the vortex-induced vibra-
tion to the galloping, both mass ratio and damping decrement
should be provided. Those parameters in the present calcula-
tion are set as indicated in Table 3, and the computed results
are compared with the experimental results, whose mechanical
parameters are also included in the same table. In Fig. 18 the
elastically supported response is demonstrated by examining
the relation between the reduced velocity and the normalized
amplitude (Y/D).

At Ur = 5.5, the motion-induced vortex oscillation is at its
maximum amplitude of ¥Y/D = 0.175. At this time, the lift
fluctuation is sinusoidal, as shown in Fig. 19(a). The base pres-
sure and mean drag at this reduced velocity is larger than those
at rest. This is because of the existence of the secondary vor-
tex, which is formed at the trailing edges of the cross section,
as can be seen in Fig. 20(a). This vortex becomes coalesced
with the rolled-up vortex traveling downstream along the side
surfaces from the leading edge and is shedded into the wake.
The flow pattern is seen to be completely synchronized with
the motion of the cylinder. At Ur = 6.0, vortex shedding is no
longer synchronized, and the amplitude decreased abruptly.
The response resumes increasing its amplitude at a value of
Ur of about 12.0. At Ur = 15.0, the reduced velocity almost
coincides with the resonant velocity, which is defined as the
reciprocal of the Strouhal number St = 0.085. Since the natural
frequency is close to the frequency of the Karman vortex shed-
ding, the oscillation is found to be modulated, as can be seen
in Fig. 19(b). The envelope of modulation in the time history

TABLE 3. Mechanical Parameter of Vibrating Cylinder

Logarithmic
Source Sc Mass ratio damping
(1) @) (3) 4)
Takeda and Kato (1992) 1.6 302 0.0053
_ Miyazaki (1982) 3.0 750 0.0040
Present calculation 2.0 500 0.0040
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FIG. 18. Aeroelastic Vibration of B/D = 2.0 Rectangular Cross
Section (Heaving Motion)
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FIG. 19. Aerodynamic Forces and Response of Transversely
Oscillating B/D = 2.0 Rectangular Cross Section: (a) Ur = 5.5;
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is indicated by the error bars in Fig. 18. Takeda and Kato
(1993) also reported a similar type of modulation in the same
reduced velocity region from observations of experiments. At
Ur = 20.0, the oscillation becomes sinusoidal again with an
amplitude of ¥/D = 0.21. This amplitude is in good agreement
with the experimental result. Since the Scruton number is rel-
atively small in value, the vortex-induced vibration, which
starts at Ur of almost 12.0, is seen to develop directly into the
galloping mode without any decrease in its amplitude, as re-
ported for a square prism by Parkinson and Wawzonek (1981).
At this reduced velocity, the flapping of the separated shear
layer becomes important, as seen in Fig. 20(b).

Thus, the k-€ model showed quite satisfactory results when
the cross section is vibrating, although at rest prediction of lift,
fluctuation is considerably underestimated. This is because
when the cross section begins to vibrate, lift fluctuation may

FIG. 20. Instantaneous Vorticity Contour of Vibrating B/D =
2.0 Rectangular Cross Section in Heaving Mode at Maximum
Amplitude: (a) Ur=5.5; (b) Ur=20.0
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be dominanted by the periodic component, and contribution
of the stochastic component becomes negligible.

CONCLUSIONS

In this paper, prediction of aerodynamic characteristics of
bluff bodies are reviewed. First, direct numerical simulation
was demonstrated. In this method, 3D treatment was neces-
sary; however, in a few cases the 2D version of the method
was successful in predicting characteristics such as motion-
induced, vortex-induced vibration.

Extensive research on the k-€ model has shown that it is
possible to apply the model to evaluation of the flow past a
square cross section by introducing eddy viscosity to incor-
porate the three-dimensionality effect, namely, the spanwise
momentum diffusion. However, so far the application of this
model has been made only for square cross sections. In the
present study, this model was applied to a wider range of cross
sections in order to extend its applicability. As a result, well-
organized coherent vortical structures were successfully sim-
ulated for all of the analyzed cross sections, and simulated
various typical aerodynamic features were in good agreement
with experimental results, particularly for discontinuities in the
Strouhal number at the critical sections of B/D = 2.8 and 6.0.
Consequently, it was shown that this model was, in fact, also
applicable to rectangular cross sections for a considerably wide
range of B/D ratios.

An incompleteness of the ensemble-averaged model was
also recognized by this study. The prediction of lift fluctuation
was considerably underestimated in some cases for stationary
cross sections when compared with the experimental results.
This is due to a defect in the turbulence model, which cannot
evaluate the stochastic component of pressure fluctuation.

On the other hand, the model showed quite good features
for prediction of the unsteady force of transversely forced os-
cillation and elastically supported vibration. In this sense, the
k-& model is expected to be a quite suitable method for these
kinds of aeroelastic applications.
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APPENDIX Il. NOTATION

The following symbols are used in this paper:

B = streamwise length of cross section;
Cp = mean pressure coefficient [=P/(1/2p,U%), where P = mean
pressure];

Cp' = fluctuating pressure coefficient [=c,/(1/2p,U%), where o,
= standard deviation of pressure];

Cp, = base pressure coefficient;

Cp = mean drag [=F,/(1/2p,U2D), where F,, = mean drag per
unit length}];

" Cp = fluctuating lift coefficient [=0,/(1/2p,U%B), where o, =

standard deviation of lift per unti length];

depth of cross section;

damping decrement;

turbulent kinetic energy;

mass per unit length;

natural frequency;

= production of turbulent kinetic energy;

pressure;

Reynolds number (=U.D/v);

R, = turbulent Reynolds number (=k'y/v, where y = distance
from wall);

Sc¢ = Scruton number [=2m/(p,BD) - 2wh];

St = Strouhal number (=n,/U. where n = peak frequency of
lift);

U, = ensemble averaged velocity (i = 1, 2);

Ur = reduced velocity (=U./neD);

T IS I D
H

U. = velocity at inlet boundary;

Y = displacement;

€ = dissipation rate of turbulent kinetic energy;
k = Karman constant (=0.41);

v, = turbulent viscosity; and

p. = air density.
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