直接数値計算による任意波状境界をもつ2次元及び3次元波状曲面上の流れの解析
Numerical Study on 2-D and 3-D Flows over Wavy Surface with Arbitrary Shaped Boundary

* 岩 奥村卓也 日野幹雄
By Yan MENG, Takuya OKUMURA, Mikio HINO

1. はじめに
河床波の発生機構に関する研究は、Kennedy(1963)がポテンシャル理論に基づく解析方法を発表して以来、多くの研究者によって精力的に進められてきた。河床不安定理論としてはKennedy(1963)、林(1970)などの研究があり、局所的な流砂量と波面との間に位相差が存在し、河床波の発生の原因であることがこれらの理論によって初めて明らかにされた。ただし、ポテンシャル理論から直接位相差を決定することはできず、それも仮定している。一方、Benjamin(1959)は河床波の発生に及ぼすせん断応力の分布を考慮し、波面境界上の半無限深さの層流を解析し、波面形状とせん断応力分布の間に位相差が存在することを示した。その後、Hsui(1971)は波状円管内の空気流を測定し、乱流の場合にも位相差が存在することを確認した。日野・宮永(1977)は正弦波状境界をもつ2次元管路での定常な層流を考え、無次元波数κ(=h/L, L：波長)、a/(a/L)、L：波面の波長)により基礎方程式を論じ、この位相差を求める、また河床波発達におけるせん断応力分布の位相差の役割について論じた(日野、1975)6)。また最近、山田・大前(1991)7)は、日野・宮永の方法を更に発展させ、相対波高ε (=a/h, a：波面の振幅)の変化を考慮できる解析を行い、より高い精度で位相差を求めた。また、論文の中には、レイノルズ数の小さい場合の前後非対称性をもつ河床波上の流れの解析についても試みた。

* 学生員 東京工業大学大学院生
** 正会員 東京工業大学工学部土木工学科

〒152 東京都目黒区大岡山2-12-1

-355-
発達した河床波上の流れに関しては従来、実験的な研究が多く行われてきただが、十分に発達した砂連の形成が発達に非対称となり、砂連の背後には剝離帯が生じているため、理論的に解析することが極めて困難である。そのために、河床の発生・発達における波面上の流れに関する統一的な解析はほとんど行われておらず、発達の発生・発達及び安定形状についてのいまだ不問の点が多い。そこで、本研究では、小規模河床波の発生・発達過程における波面上の流れを統一的に取り扱える数値計算コードを開発し、それを利用して任意波状境界をもつ2次元または3次元波面上の流れ場を直接に解いて、波面上の流れ及びせん断応力を解析した。なお、本数値計算には従来の解析と比較するために、日野・宮永の解析と同じように流れは自由表面の効果を取り入れていない管路流れとした。

2. 計算方法

2.1 基礎方程式及び計算スキーム

基礎方程式はMAC法に従い、ナビエストークスの方程式及びその周辺の発散をとり常に次の時間ステップで連続式を満たすように補正項を加えた圧力に対するポアソン方程式である。

\[
\frac{1}{\Delta t} \cdot \frac{\partial \mathbf{v}}{\partial t} + (\nabla \cdot \mathbf{v}) \mathbf{v} = - \nabla p + \frac{1}{Re} \Delta \mathbf{v} \quad (1)
\]

\[
\frac{\partial p}{\partial t} = - \nabla (\nabla \cdot \mathbf{v}) - \frac{1}{Re} \Delta \mathbf{v} \quad (2)
\]

ここでReはレイノルズ数で、Δtは(1)式を差分化するときの時間刻みである。時間微分についてはオイラーの前進差分法式を用いた。非線形項を除いたすべての空間微分は中心差分によって近似され、非線形項は河村ら(1985)により開発された3次精度の風上差分法式を用いた。具体的な式は次式のようになる。

\[
(u_{i+1}^n - 2u_{i+1} - 9u_i - 10u_{i-1} + 2u_{i-2})/6\Delta x \quad (\text{for } u_i > 0)
\]

\[
(u_{i+1}^n - 2u_{i+1} + 9u_i + 2u_{i-1} - u_{i-2})/6\Delta x \quad (\text{for } u_i < 0)
\]

境界条件は、壁面では粘着条件、流れ方向及びスパン方向には周期条件を課した。壁面での粘着条件を精密に満たすため、船直方向には壁に近づくにつれて細かくなるような不等間隔格子を用いた。また、式(2)を解く場合、壁面上での圧力境界条件が必要となり、本研究では∂p/∂n = 0という条件を与えた。

2.2 任意波状境界上の直交格子の生成と座標変換

任意波状境界をもつ波面上の流れを解析する場合に、波面に沿った直交座標系をとることが望ましい。なぜならば、壁表面の境界条件の多くが壁の法線方向に与えられているからである。図-1はその一つの一例で、壁面上の圧力境界条件∂p/∂n = 0は壁面に直交している（n, s）座標系では、p_1 = p_2 = 1）に近似するように置き換えられるが、直交していない（x, y）座標系では、p_1 = p_2 = 1に近似することができる。2次元直交格子を生成するために、本研究ではRyskinら(1985)の方法を用いた。図-2 (a) は初期グリッドを示しており、直交化した後のグリッドは図-2 (b) のようになる。そこで、本研究では、図-2 (b) のような複雑な領域を図-2 (c) のような矩形領域に数学的に変換して、それから差分式を導いた。座標変換の詳細については文献を参照されたい。

3. 計算結果と考察

3.1 理論との比較
数値計算コードの妥当性を確かめるために、まず、日野・宮永が動波法により求めた正弦境界上の流れの摂動解と比較する。図-3 はその結果を示しており、破線は日野・宮永の解析解で、実線は本計算から得られた流速分布である（黒丸は日野・宮永の水素蒸気法による測定結果）。本数値計算の結果と理論解はよく一致し、部分的に若干のずれは日野・宮永の動波展開での高次項の打ち切り誤差によるものと考えられる。波面上の流れの流速分布の特徴としては波面内の各断面における流速分布の形が流量を保存するため、かなり変化していることが挙げられる。つまり面積の広い各部に於いては速度分布が滑れた形となり、クレストでは逆にせり出した形となる。

次に、計算条件を変えて河床形状とせん断力との位相差を求め、波状境界をもつ層流に関するより精度の高い山本・大前らの動波解と比較する。計算条件及び計算結果の詳細は3-2 (a) に記述する。図-4 はレイノルズ数 Re=100で、相対波高 ε=0.1、0.3の場合での位相差 Φ と無次元波数 κ の関係を示している。図中の実線は山本・大前らの解析解から得られたもので、黒丸と三角形は本数値計算の結果である。計算の結果と解析解とはよく一致しており、数値計算コードの妥当性を確かめた。

図-3 日野・宮永の近似解と本数値計算の結果の比較

3・2 2次元波面上の流れの流速とせん断応力分布

本計算では二次元波面として、正弦形境界とDune形境界を取り上げた。正弦形境界は波高発生初期の形を模倣し、Dune形境界は発達した砂波の形を近似し前後非対称の形を取る。境界断面形状により計算に用いた座標系を図-5 に示す。流れ場は2次元であるため、メッシュ数はx方向に51、y方向に51、z方向に5点とした。また、本研究で着目するせん断力 τ と著者

\[\tau_{xy} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \]

（a）正弦形をした河床波上の流れ

計算条件は表1に示す通りであり、U₀は代表流速で、高さの平行平板間のポアズイユ流れの最大流速をとる。U₀は断面平均流速を表している。また、計算中には無次元流速 Q が一定の値をとることを確認しながら計算を進めた。これはきわめて重要な点である。平均圧力勾配 p/ax は未知の値として計算から求める。

図-6 は相対波高 ε=0.1の場合の計算結果を示しており、上からそれぞれ流速分布、拡大した流速分布、流速のコンター、流線及び断面せん断応力の分布を示している。見やすくするために、図-6 (a) のメッシュ数をx方向に21まで減らして流速ベクトル図を作った。相対波高 εが小さい場合には、流れが剝離せずに正弦境界に沿って流れていく。壁面せん断応力の最大値は境界断面のクレストの上流側 φ=22.0°の所に現れる。

表-1 計算条件（正弦形境界の場合）

図-7 は相対波高 ε=0.3の場合の計算結果で、流れがクレストの下流側で少し剝離している。流速もクレ

—357—
ストの下流側で正の値をとり、せん断応力はその領域で減少している。壁面せん断応力の最大値は、剥離の発生の有無にかかわらず、境界面のクレストの上流側（θ=13.0°）に現れ、位相差φの値は相対波高ζ=0.1の場合と比べると小さな値となっている。相対波高ζの大きい場合には、せん断応力の絶対値が大きいために、砂礫の発達を促進させると考えられる。

（b）DUNE形をした河床波上の流れ

次に、Dune形をした河床波上の流れを解析する。Dune形境界の断面形状は山田・大前により提案された次式で与える。

\[\xi(\theta) = -\frac{A}{B} \left(\frac{\xi}{B} \right)^{1/2} \tan \left(\frac{\theta}{2} \right) \]

（0≤θ≤1）

式中に含まれるパラメータL、A、t、θの値により境界形状を変化させることができる。計算条件は表2に示す通りで、これらの条件は従来の抵抗法では扱えなかった領域である。

図8は相対波高ζ=0.1の場合の計算結果を示しており、正弦形境界の場合と同じように、流れが剥離せずにDune形境界に沿って流れていることが分かる。壁面せん断応力の形は境界断面形状と似ており、切り立った形となっている。壁面せん断応力の最大値はクレストの少し上流側に現れる。

図9は相対波高ζ=0.3の場合の計算結果で、正弦形境界の場合と比べると、流れがクレストの下流側で大きく剥離し、流線も閉じた形となっている。壁面せん断応力の形は境界断面形状に似ており、切り立った形となっている。壁面せん断応力の形は、かなり切り立った形となるが、山田・大前の解析で現れた激しい変動がまったく出ていないことが分かる。また、壁面せん断応力の値がクレストの下流側で負の値をとることは、Dune形砂礫をさらにせり上げる効果があり、河床形状はさらに切り立っていく。最終的に、stepの様な極端な河床形状となることが予想される。実際の移動床に関する観察は山田・池内・植松（2）の論文に論じられ、経時的な地形の変化は実験によって明らかになっている。この数値計算は、一定の水理条件と相対波高を与えた場合、正弦形砂礫からDune形砂礫へ発達していく過程の中の二つの段階での河床波面上の流れを解析したことを示す。この数値計算コードを使えば、砂礫の経時的な変化を追って解析でき、小規模河床波の発生・発達過程における波面上の流れを統一的に取り扱える。

---358---
3・3 3次元波面上の流れとせん断力

最後に、2重正弦形をもつ3次元波面上の流れを解析し、3次元波面上の流れの特徴やせん断応力の分布を明らかにする。境界形状は林・片岡(1987)139)の論文を参考にして与えた。計算条件は表3に示す通りで、境界形状のパラメータは林・片岡139)の実験と同じ値を取った。3次元の場合、座標は流下方向のみならず横断方向にも境界に直交させることが必要である。そのため、2・1に記した直交手法を拡張し、xとz方向に別々に直交させると2重直交方法を提案した。図-10は直交した後のグリッドを示している。図-11はこの複列正弦形河床波の波高コンターを示す。流下と横断方向に周期境界条件とし、流下と横断方向共に一波長分しか計算しない。また、メッシュ数はx方向に41、y方向に41、z方向に21点と取った。図-12は場所(I),(II),(III)でのX,Y断面内の速度u, vのベクトルを示しており、場所(I)と場所(III)での速度u,vベクトルは波面の変化に対応して変化していることが分かる、つまり面積の広い部分は速度分布が圧縮された形となり、クレストでは逆に拡張した形となる。場所(II)では流下方向の波面の変化がまったくないため、主流速Uの鉛直分布は流下方向に同じ形を取り、流れ場は正しく計算されていることが分かる。図-13は壁面せん断応力のコンターを示しており、谷部ではせん断応力が小さく、クレストでは大きい値をとる。せん断応力の最大値は境界断面のクレストの少し上流側に現れ、3次元の場合でも波面形状とせん断応力分布の間に位相差が存在していることが分かる。図-14は各YZ断面内の速度v, wのベクトルを示しており、図-13と一緒になって考えれば、壁面近傍の流れがクレストを回り込むように流れていることが分かる。図-14(h),(a),(b)は登り坂、(d),(e),(f)は下り坂での流れの挙動を示していて、この流れは3次元河床波の形成に重要な役割を果たしていると考えられる。
4. おわりに

本研究は、ナビエ・ストークス方程式を直接数値的に解くことにより、任意波状境界をもつ2次元及び3次元波面上の流れ場を層流域で解析した。計算結果は、正弦形境界をもつ2次元波面上の流れについて、従来の研究と同じ結論が得られ、従来の解析手法が取り扱えないDune形境界をもつ波面上の流れと3次元波面上の流れについても良い結果が得られた。この数値計算コードは、任意波面形状・任意レイノルズ数Reでの流れ解析ができるという特徴をもており、また計算精度の面でも、振動発生による打ち切り誤差がまったく含まれていないため、振動発生による解析解に較べてより良好精度の計算が期待できる。今後、さらに実現象に対応する高レイノルズ数と乱流領域の流れについて研究を進めたいと考えている。

謝辞 本研究にあたり、岸弘之氏（運輸省・港湾局開発課）と神田学氏（東工大・助手）から有益な助言、また両氏が開発したDSコードを頂いたことを、記して深謝する。