A Study on Structure Parameters of an Offshore Wind Turbine by Excitation Test Using Active Mass Damper

Shou Oh
Takeshi Ishihara
The seismic load on wind turbine support structure depends on the damping ratios. The values suggested in design codes are different among countries.

- **1\(^{st}\) mode damping ratio**
 - Japan (JSCE) 0.8\%(With gearbox), 0.5\%(Without gearbox)
 - Germany (DIBt) 0.23\%
 - US (AWEA) 1.0\%

- **2\(^{nd}\) mode damping ratio**
 - No measurement so far. No clear description in design codes.
Conventional methods to obtain damping ratios

- Ambient Vibration Analysis
 ⇒ 1st mode is mainly excited by wind

- Human-Power Excitation Test
 ⇒ Not suitable for excitation of higher modes which are usually higher than 2Hz
Objective

- Perform an excitation test using active mass damper up to 2nd mode on an offshore wind turbine tower.

- Identify the natural frequency and damping ratio of 1st and 2nd mode for fore-aft and side-side direction under both pitch-feathering and pitch-fine condition.
Observation Site

Tokyo, 28/07/2014

Observation Site:

- Observation Site: 北緯35度40分54秒，東経140度49分24秒 (世界測地系)
- Wind Turbine: 北緯35度40分54秒，東経140度49分13秒 (世界測地系)
- Observation Tower: 北緯35度40分54秒，東経140度49分24秒 (世界測地系)

Map:

- Observation Site
- Wind Turbine
- Observation Tower
- Ocean Cable
- Distance: 285 meters
Outline of Wind Turbine Facilities

- Anemometer
- AMD controller
- Inside Nacell
- Active Mass Damper (AMD)
Outline of Target Wind Turbine and Measurement

Strain gage height
+75.83m
+38.83m
+10.83m

Accelerometer height
+74.79m
+58.98m
+55.58m
+36.58m

Active Mass Damper

H=70m

Strain gage

10.3m

Accelerometer

side-side (Y)
Fore-aft (X)

Tokyo, 28/07/2014
Outline of Excitation Test

weight (x-direction 1.7t, y-direction 1.3t)

x axis excitation (± 0.2m)

y axis excitation (± 0.3m)

Frequency range (0.1 ~ 4.0 Hz)

Tokyo, 28/07/2014
Measurement Conditions

Yaw fix, Rotor fix

- **Excitation Direction**
 - Fore-Aft
 - Side-Side

- **Blade Pitch State**
 - Pitch-Feather
 - Pitch-Fine
Ambient vibration analysis is conducted with both pitch-feathering and pitch-fine condition.

1st mode damping ratio is estimated with Random Decrement Method.

Tokyo, 28/07/2014
Sinusoidal Vibration Test

- Sinusoidal excitation at several frequencies
- Using measured tower acceleration to calculate
 1. (tower acceleration amplitude)/(excitation force amplitude)
 2. Phase angle
- Estimate resonant frequency ω and damping ratio ξ from the analytical equation assuming 1 DOF

Excitation Force

$$ F = F_i \sin \omega t $$

Response function

$$ \frac{|a|}{|F|} = \beta^2 \frac{\phi_n(Vib)\phi_n(Acc)}{\sum_i \phi_n(i) m_i \phi_n(i)} \frac{1}{\sqrt{(1 - \beta^2)^2 + (2\xi\beta)^2}} $$

Acceleration Response

$$ a(t) = A \sin(\omega t + \phi) $$

Phase

$$ \theta = \tan^{-1} \left(\frac{2\xi \beta}{1 - \beta^2} \right) $$
Result of Sinusoidal Test in Fore-aft Direction

1st mode

\[F = 0.351 \text{Hz} \]
\[\zeta = 0.2\% \]
\[\omega_1 = 0.351 \text{Hz} \]
\[\zeta_1 = 0.2\% \]

2nd mode

\[F = 2.935 \text{Hz} \]
\[\zeta = 2.5\% \]
\[\omega_2 = 2.935 \text{Hz} \]
\[\zeta_2 = 2.5\% \]

- 1st mode damping of 2.4MW was 0.2%
- 2nd mode damping was found to be 2.5%
Free Vibration Result of 1st mode

\[a(t) = A \exp(-\xi \omega t) \]

Fore-aft 1st

- Pitch-feathering
 - \(f_1 = 0.351 \text{Hz}, \ \xi_1 = 0.2\% \)

Side-side 1st

- Acceleration
 - \(f_1 = 0.357 \text{Hz}, \ \xi_1 = 1.2\% \)

Pitch-fine

- \(f_1 = 0.350 \text{Hz}, \ \xi_1 = 1.0\% \)

- \(f_1 = 0.347 \text{Hz}, \ \xi_1 = 0.3\% \)

Tokyo, 28/07/2014
Free Vibration Result of 2nd mode

\[a(t) = A \exp(-\xi \omega t) \]

Fore-aft 2nd

- \(\xi_2 = 2.4\% \)

Side-side 2nd

- \(\xi_2 = 3.2\% \)

Tokyo, 28/07/2014
Comparison of mode shapes

The mode shapes calculated with FEM model agreed well with measurement data.

<table>
<thead>
<tr>
<th>direction</th>
<th>Measurement</th>
<th>FEM model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fore-aft</td>
<td>1st: 0.351Hz</td>
<td>0.367Hz</td>
</tr>
<tr>
<td></td>
<td>2nd: 2.935Hz</td>
<td>3.223Hz</td>
</tr>
<tr>
<td>Side-side</td>
<td>1st: 0.352Hz</td>
<td>0.365Hz</td>
</tr>
<tr>
<td></td>
<td>2nd: 2.970Hz</td>
<td>3.165Hz</td>
</tr>
</tbody>
</table>
Conclusions

- Damping ratios for 1st and 2nd mode of a wind turbine are identified by sinusoidal excitation test and free vibration tests.

- The structural damping ratio for wind turbine 1st mode is 0.2\%, which is smaller than the conventional value used for middle size wind turbines.

- The structural damping ratio for wind turbine 2nd mode is 2.4\% in the fore-aft direction and is 3.2\% in the side-side direction.

- Damping ratios for wind turbine 1st mode are strongly affected by blade pitch angles.

<table>
<thead>
<tr>
<th>Blade Pitch</th>
<th>Fore-Aft 1st</th>
<th>Fore-Aft 2nd</th>
<th>Side-Side 1st</th>
<th>Side-Side 2nd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free-Vibration test</td>
<td>Feather</td>
<td>0.2%</td>
<td>2.4%</td>
<td>1.2%</td>
</tr>
<tr>
<td>Fine</td>
<td>1.0%</td>
<td>-</td>
<td>0.2%</td>
<td>3.2%</td>
</tr>
</tbody>
</table>