A Nonlinear Model for Prediction of Turbulent Flow Over Steep Terrain

Numeral model

- **Microclimate Analysis System for Complex Terrain** (MASCOT) was developed for the prediction of local wind in complex terrain

Governing Equations

\[
\frac{\partial u_i}{\partial x_i} = 0
\]

Finite Volume Method was used for discretization. The Reynolds averaged navier-stokes equations were solved by SIMPLE algorithm. The Residual Cutting Method was used for the linear wind in complex terrain at the sites are strongly affected

Numerical Methods

- Arbitrary non-orthogonal coordinate along the terrain surface was adopted.

Verification

To verify the performance of the non-linear model, numerical simulation was carried out for the flow over a 3D hill and the predicted mean wind velocity and turbulence were compared with experimental results.

- **Mean wind speed**

 • Predicted wind speed by MASCOT shows good agreement with the experimental results.

- **Turbulent kinetic energy**

 • MASCOT is also be able to predict the turbulent kinetic energy with high accuracy.

Application to Tappi Wind Park

Tappi Wind Park consists of ten wind turbines, all of which are installed on complex terrain.

- The wind speeds and directions at the sites are strongly affected by steep terrain.

Prediction of Annual mean wind speed

Annual mean wind speed for all the turbines are simulated by WAsP and MASCOT using the wind data observed at the lighthouse as a reference value.

- The prediction by MASCOT shows good agreement with the measurement while WAsP overestimates the annual mean wind speed at the turbines No.2-5.

Conclusions

- Mean velocity and turbulent are simulated by MASCOT show good agreement with the wind tunnel on a steep hill.
- Annual mean wind speed predicted by MASCOT agree with those measured at the turbine nacelles, while WAsP gives for some sites which are located at relatively low elevations.
- New boundary treatments of wind flow over real terrain give more accurate results than conventional ones.
- Analysis of wind flow with an area of 10km x 10km was performed by a PC within one hour.