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a b s t r a c t

The vortex-induced vibration (VIV) of circular cylinder in uniform flow with two-degree-
of-freedom (2DOF) and geometrical nonlinear system is investigated numerically using
the combined sliding and layering dynamic meshes. The characteristics of vibration
amplitude, fluid force coefficients, branching behaviour, vibration trajectory, energy
transfer and flow pattern of circular cylinder in VIV are studied with two-dimensional
shear stress transfer (SST) k-ω turbulence model and three-dimensional large eddy
simulation (LES). It is found that in the simulation with LES model the predicted vibration
amplitude and fluid force coefficients show good agreement with the experimental
data, while in the simulation with SST k-ω model these parameters are significantly
underestimated. The two triplets (2T) vortex shedding mode happens in the super upper
branch of circular cylinder with 2DOF linear system and leads the large-magnitude
positive energy transferring from fluid to cylinder, which causes the maximum vibration
amplitude. For the circular cylinder with 2DOF nonlinear system, the vibration simulated
by LES model shows a galloping-like phenomenon that the amplitude keeps increasing
with the reduced velocity Ur . The crescent-shaped trajectory and the 2T vortex shedding
mode happen upon the critical Ur , which is similar to that in the super upper branch
of circular cylinder with 2DOF linear system. This phenomenon is caused by the
amplitude-dependent stiffness of nonlinear system and the modified reduced velocity
U∗ reveals the universality of vibration amplitude for the circular cylinders with linear
and nonlinear systems.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

When a circular cylinder is immersed into a steady flow, vortices shed from alternating sides of the cylinder and lead
he unsteady drag and lift forces on the cylinder. These vortices may induce significant vibration when the vortex-shedding
requency fv approaches the structural natural frequency fn, which is called the vortex-induced vibration (VIV). VIV is an
mportant concern for engineering applications, such as bridge cables subjected to wind and offshore risers subjected to
cean currents. It may increase the dynamic load on the structures and accelerate the fatigue failure. For the positive
spect, the large-amplitude VIV is considered for energy harvesting in recent years as a pure, plenty and sustainable
nergy resource (Bernitsas et al., 2008).
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Although the VIV of flexible circular cylinder is essentially a three-dimensional (3D) phenomenon, the end effect
nd multiple vibration modes are negligible for the stiff structures, therefore it can be simplified as a two-degree-of-
reedom (2DOF) system that a rigid circular cylinder elastically mounted in the streamwise and transverse directions. In
ddition, the vibration amplitude of VIV in the transverse direction is generally much larger than that in the streamwise
irection, so that the study of VIV started from the canonical problem of a rigid circular cylinder freely vibrating in the
ransverse direction as a single-degree-of-freedom (SDOF) system. The wind tunnel experiment of Feng (1968) is one of
he earliest and widely known studies for the VIV of circular cylinder with SDOF system. It was found that the maximum
IV amplitude of cylinder decreased as the structural damping ratio ζ = c/(2mωn) increased, where c, m and ωn are
he damping, mass and natural angular frequency of structure. Khalak and Williamson (1996, 1997, 1999) conducted a
omprehensive study for the SDOF VIV of circular cylinder through water tank tests. Their results support the theory of
riffin (1980) that the maximum VIV amplitude of circular cylinder depends on the mass-damping ratio m∗ζ , where the
ass ratio m∗

= 4m/(πρD2L) is the ratio of structure mass m to the displaced fluid mass, with D and L being the diameter
and length of circular cylinder and ρ being the fluid density. In their research with m∗

= 2.4 and 10.3, three branches of
response depending on the reduced velocity U r were found, namely the initial branch, upper branch and lower branch,
where Ur equals U/fnD with U being the freestream velocity, while in Feng’s research with m∗

= 248 only the initial
branch and lower branch existed and the upper branch was not observed. Khalak and Williamson (1999) showed that
different modes of vortex shedding were directly associated with these branches. The 2S mode indicating two single
opposing-sign (counter-rotating) vortices shedding per vibration period happened in the initial branch and the 2P mode
indicating two pairs of opposing-sign vortices shedding per vibration period happened in the upper and lower branches,
follows the terminologies of vortex shedding mode defined by Williamson and Roshko (1988).

Furthermore, the addition of vibration in the streamwise direction forms the 2DOF VIV of circular cylinder. Jauvtis and
illiamson (2004) found for the case of the mass ratio m∗ > 6.0, the system response branches, peak amplitudes and

ortex shedding modes of circular cylinder with 2DOF system were similar to those with the SDOF system. However, for
∗ < 6.0, a high-amplitude branch of response named as super-upper branch was induced after adding the streamwise
egree of freedom in the system of circular cylinder. They also showed that the emergence of the super-upper branch
as related to the arising of the 2T vortex formation mode, where two triplets of vortices shed per oscillation period. The
T and multi-vortex shedding modes were also found to relate with the appearance of a third and higher harmonics in
he lift force.

To investigate detailed characteristics and the mechanism of VIV, the numerical simulation allowing a coupled analysis
f the fluid–structure interaction is considered as a powerful tool. It provides a simultaneous vision of the wake patterns,
luid forces and dynamic responses. The numerical studies on the VIV of circular cylinders were conducted for SDOF system
ith low Reynolds number Re in the early stage, where Re is defined as ρUD/µ with µ standing for the dynamic viscosity
f fluid. Leontini et al. (2006) and Willden and Graham (2006) investigated the branching behaviour of SDOF VIV using
wo-dimensional (2D) Navier Stokes simulation at Re = 200 and 50 to 400 respectively. The direct numerical simulation
DNS) studies were conducted by Lucor et al. (2005) and Zhao et al. (2014) with Re up to 3000 and 1000 respectively
sing 3D models. These numerical results agreed with the experimental phenomena qualitatively, while the predicted
ibration amplitudes were not comparable with the experimental data because most of experiments were performed
t the subcritical Reynolds number. Guilmineau and Queutey (2004) performed numerical simulation for the VIV of a
ircular cylinder with SDOF system by using 2D shear stress transport (SST) k-ω turbulence model with Reynolds number
p to 15000, which well captured the responses in the initial and lower branches, but the response in the upper branch
id not correspond with the experimental data. The same problem was found by Pan et al. (2007) which may be due to
he limitation of 2D numerical simulation because the three-dimensionality of flow in the wake of a circular cylinder is
ignificant when the Reynolds number exceeds 200 (Williamson, 1988). Zhao et al. (2014) found the three-dimensionality
f flow was strong in the upper branch and indicated the necessity of three-dimensional simulation. Saltara et al. (2011)
imulated the VIV of a SDOF circular cylinder with a low mass-damping parameter at Re = 10000 using detached eddy
imulation (DES). Their numerical simulations for Ur < 6 agreed with the experimental results of Khalak and Williamson
1997) while the vibration amplitudes and force coefficients were overestimated for Ur > 6. Recently, Ishihara and Li
2020) investigated the VIV of a SDOF circular cylinder with a large mass ratio of 248 and a small damping ratio of
.00257 at the Reynolds numbers ranging from 16000 to 24500 using large eddy simulation (LES). The predicted vibration
mplitude and frequency agreed well with the experimental data of Feng (1968).
Besides the numerical studies for the VIV of circular cylinder with SDOF system, a few numerical studies were

erformed for the circular cylinder with 2DOF system. Pontaza and Chen (2007) employed 3D LES method to study VIV
of a 2DOF circular cylinder with low structural mass and damping at Re = 105 for the case of Ur = 6 only. A response
characterized by the figure-eight pattern was observed and the vortex shedding with 2S mode was exhibited. However,
the super upper branch with 2T mode shown in the experiment was not investigated, which was also not reproduced by
2D numerical simulations of Singh and Mittal (2005), Zhao and Cheng (2011) and Wang et al. (2019). Navrose and Mittal
(2013) conducted the DNS numerical study for the VIV of 2DOF circular cylinder at Re = 1000 without the validation by
experimental data. Gsell et al. (2016) examined the VIV of a 2DOF circular cylinder at Re = 3900 also using DNS method
and the predicted responses of circular cylinder were underestimated comparing with the experimental data reported by
Jauvtis and Williamson (2004) since the simulation was performed at a lower Reynolds number than the experimental
one. Until now, the numerical study for the VIV of 2DOF circular cylinder is still limited.
2
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As the VIV amplitude of 2DOF circular cylinder can achieve times of cylinder diameter with low m∗ζ , the axial
tretching of the springs may become intrinsically nonlinear, amplitude-dependent and bi-directionally coupled (Srinil
nd Zanganeh, 2012). Even though, most of previous research disregarded the effect of geometrical nonlinearities on the
IV of circular cylinder. Mackowski and Williamson (2013) performed an experiment for the VIV of circular cylinder
ith nonlinear restoring forces using the Cyber–Physical Fluid Dynamics force-feedback technique. They found that the
ibration amplitude increased as the nonlinear restoring force increased and showed a galloping-like vibration. However,
he mechanism of this phenomenon has not been clarified yet.

In this study, the vortex-induced vibration of circular cylinder with 2DOF and geometrical nonlinear system is
nvestigated using 2D SST k-ω and 3D LES turbulence models. The numerical models for the flow and structure are
escribed in Section 2. The numerical results for the VIV of circular cylinder with 2DOF linear system are discussed in
ection 3. The effect of geometrical nonlinear system on the VIV of circular cylinder is investigated in Section 4. The
onclusions are summarized in Section 5.

. Numerical models

The numerical models used in this study are explained in this section. The governing equations and solution schemes
re given in Section 2.1. The modelling of oscillation system is introduced in Section 2.2 and the computational domain
nd mesh are described in Section 2.3.

.1. Governing equations and schemes

The turbulence model is important to simulate the bluff body aerodynamics at high Reynolds number accurately
nd economically. The SST k-ω and LES models are chosen for the 2D and 3D simulations respectively in this study
ecause of their good performance for simulating the phenomena with strong flow separation and pressure gradient
Ferziger and Peric, 2002; Li et al., 2018). In the SST k-ω model, the turbulence within every time step is averaged out
and parameterized. In the LES analysis, large eddies are directly computed in simulations, while the influence of eddies
smaller than the control volume are parameterized. The governing equations for the averaged or filtered continuity and
unsteady incompressible Navier–Stokes equations in the moving mesh system are

∂ρũi

∂xi
= 0 (1)

ρ
∂ ũi

∂t
+ ρ

∂ ũi

∂xj

(
ũj − ûj

)
= −

∂ p̃
∂xi

+ µ
∂

∂xj

(
∂ ũi

∂xj
+

∂ ũj

∂xi

)
−

∂τij

∂xj
(2)

where x is the coordinate, u is the velocity, p is the pressure and t is the time. The subscripts i, j and k stand for
different directions in the Cartesian coordinates, namely the streamwise, transverse and vertical directions. The superscript
‘‘∼’’ indicates time averaged values in the simulation with SST k-ω model, while it indicates the resolved values in the
simulation with LES model. û is the velocity component of the moving mesh. τij is introduced to consider the difference
between ũiuj and ũiũj, i.e.,

τij = ρũiuj − ρũiũj (3)

Although the expressions of τij in the SST k-ω and LES models are same, their meanings are different. τij in the SST k-ω
odel is the time-averaged Reynolds stress and stands for the effect from the vortices to the mean flow field, while τij

n LES model indicates the subgrid-scale Reynolds stress and accounts for the contribution from the unresolved smaller
ortices to the large size vortices.
The time-averaged Reynolds stress τij in the SST k-ω model is modelled as

τij = −2µt S̃ij +
2
3
(ρk + µt

∂ ũk

∂xk
)δij (4)

where δij is the Kronecker delta and S̃ij is the rate-of-strain tensor, i.e., the symmetric component of the velocity gradient
tensor ∇ũ defined as

S̃ij =
1
2

(
∂ ũi

∂xj
+

∂ ũj

∂xi

)
(5)

µt is the turbulent viscosity and is modelled as (Menter, 1994)

µt = ρ
k
ω

(6)

where k is the turbulence kinetic energy and ω is the turbulence frequency.
In the LES turbulence model, the subgrid-scale stress is modelled as

τij = −2µt S̃ij +
1
τkkδij (7)
3
3
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tructural parameters in the water.
Ur m∗ ζ m∗ζ Re fn (Hz) D (m)

2–14 2.6 0.0036 0.009 2000–14000 0.4 0.05

where µt is the subgrid-scale turbulent viscosity and modelled by the dynamic Smagorinsky–Lilly model (Smagorinsky,
963; Germano et al., 1991; Lilly, 1992) as

µt = ρL2s
⏐⏐⏐S̃⏐⏐⏐ = ρL2s

√
2S̃ijS̃ij (8)

where
⏐⏐⏐S̃⏐⏐⏐ =

√
2S̃ijS̃ij and Ls is the mixing length of subgrid-scales defined as

Ls = min
(
κd∗, CsV

1
3

)
(9)

where κ is the von Karman constant and is taken equal to 0.42. Cs is Smagorinsky constant, which is dynamically computed
ased on the information provided by the resolved scales of motion (ANSYS Inc., 2015). d∗ is the distance to the closest

wall, and V is the volume of a computational cell.
For the wall-adjacent cells, when they are in the laminar sub-layer, the wall shear stress is obtained from the laminar

stress–strain relationship as

ũ
uτ

=
ρuτy∗

µ
(10)

here ũ is the filtered velocity that is tangential to the wall, uτ is the friction velocity and y∗ is the distance between the
entre of the cell and the wall. If the mesh cannot resolve the laminar sub-layer, it is assumed that the centroid of the
all-adjacent cells falls within the logarithmic region of the boundary layer, and the law-of-the-wall is employed as

ũ
uτ

=
1
κ
ln E

(
ρuτy∗

µ

)
(11)

here the constant E is taken equal to 9.8.
The averaged or filtered Navier–Stokes equations are solved by the commercial CFD code ANSYS Fluent 16.2 (ANSYS

nc., 2015) using the finite volume method. The second-order difference scheme is used for the convective and viscosity
erms. SIMPLE (Semi-Implicit Method for Pressure Linked Equations) algorithm is employed for solving the discretized
quations. The simulations were performed on the parallel computing cluster system (Intel Xeon CPU E5-2667 v4, 240
ores, 960 GB memory). The 3D LES simulation with 80 cores takes about 150 h of wall-clock-time and the 2D SST k-ω
imulation with 8 cores takes about 30 h of wall-clock-time for each reduced velocity.

.2. Structural dynamic model

The 2DOF dynamic system of circular cylinder is modelled by a mass–spring system in both streamwise and transverse
irections considering the geometrical nonlinearity as

mẍ + cẋ + kx
[
1 + αx(

x
D
)2 + βx(

y
D
)2
]

= FD(t) (12)

mÿ + cẏ + ky
[
1 + αy(

x
D
)2 + βy(

y
D
)2
]

= FL(t) (13)

where FD and FL are the drag and lift forces obtained by integrating pressure and friction over the cylinder surface. k is
the structural stiffness and the nonlinear coupled restoring force is considered based on the model of Bush (1992). α and

are the geometrical nonlinear coefficients caused by the amplitude-dependency and bi-directionally coupling of spring
tiffness. The subscript x and y stand for the streamwise and transverse direction respectively. These geometrical nonlinear
oefficients are derived through the Duffing equation described by Bush (1992) in a one-directional spring case as shown
n Appendix. αx = αy = βx = βy = 0.7 were used in Srinil and Zanganeh (2012) as the best setting of these geometrical
onlinear coefficients through their theoretical study and are used in this study. Specially, this dynamic system becomes
inear when αx = αy = βx = βy = 0 and turns to SDOF if only one equation of motion is taken into account.

The structural parameters are set the same as the water tank experiment of Jauvtis and Williamson (2004) in the
resent numerical models. The detail setting of structural parameters is shown in Table 1, where the ζ and fn are the
nes in the water. The added mass is considered for ζ and fn using the definitions in Jauvtis and Williamson (2004) as
=

c
2
√
k(m+mA)

and fn =
1
2π

√
k

m+mA
, where mA is the added mass and equals to the mass of displaced water. To analyse the

tructural response of the dynamic system, the equation of motion is solved by the fourth-order Runge–Kutta method.
4
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Fig. 1. Schematic of computational domain.

Fig. 2. Numerical mesh and boundary conditions.

2.3. Computational domain and mesh

The schematic of computational domain is shown in Fig. 1. The width and depth of the computational domain are 50D
and 30D respectively and the spanwise length L of the computational domain in LES study is 4D, referred to the previous
esearch of Ishihara and Li (2020) and Li and Ishihara (2021) that this length is enough to simulate the lift correlation
in the spanwise direction of circular cylinder. The cylinder is located 15D downstream from the inlet. The computational
domain used in the simulation with SST k-ω model is two-dimensional.

The numerical mesh and boundary conditions are shown in Fig. 2 that the hexahedron mesh is used with high
resolution near the cylinder to capture the flow accurately. The y+ value of the near-wall mesh is less than 1. Uniform
velocity condition is specified at the inlet boundary, and zero diffusive outflow condition is used at the outlet boundary.
Symmetric condition is used for the transverse and vertical surfaces of domain. The influence of symmetric and periodic
transverse boundaries for the transverse side surfaces of domain is compared in Ishihara and Li (2020) and it is found the
correlation coefficient of lift force along the spanwise direction of circular cylinder is better simulated with symmetric
boundary than periodic boundary.

The computational domain is divided into three subdomains combined with sliding and layering meshes, which is
special designed for this study to satisfy the requirement of computational accuracy and flexibility. The inside domain
between the two vertical sliding interfaces moves in both transverse and streamwise directions, and the domain outside
the two vertical interfaces deforms in the streamwise direction with the dynamic layering mesh applied in the inlet and
outlet boundaries. The sliding mesh is a special case of general dynamic mesh wherein the nodes move rigidly in a given
dynamic mesh zone. Multiple cells are connected with each other through non-conformal interfaces. As the mesh motion
is updated in time, the non-conformal interfaces are likewise updated to reflect the new position of each zone. The flux
across the non-conformal interfaces is estimated considering the two adjoining cells that move relatively to each other
(Sarwar and Ishihara, 2010). In the region using the layering mesh, both split and collapse factors for the cell near the
5
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Table 2
Mesh convergence test.

Mesh quantity Ax/D Ay/D

Mesh 1 455,680 0.3156 1.3576
Mesh 2 911,360 0.3163 (0.2%) 1.4146 (4.2%)
Mesh 3 1,822,720 0.3149 (0.4%) 1.4458 (2.2%)

Fig. 3. Variation of (a) non-dimensional transverse amplitude Ay/D, (b) non-dimensional streamwise amplitude Ax/D and (c) non-dimensional
ransverse frequency foy/fn of free vibration with Ur for circular cylinder with 2DOF linear system.

oundaries are 0.4 with respect to the first cell height at the boundaries referred to Zhang and Ishihara (2018). The sliding

esh has the second order accuracy, which is higher than the dynamic layer mesh with the first order accuracy as shown

n Ferziger and Peric (2002). The dynamic layer mesh is highly flexible and is used in the domain where the flow field is

lmost uniform and changes slowly to reduce its adverse effect on the numerical accuracy.

The convergence of mesh is tested through the predicted vibration amplitude of circular cylinder at Ur = 8,

orresponding to the maximum amplitude of VIV in the experiment by Jauvtis and Williamson (2004). The non-

imensional streamwise vibration amplitude Ax/D and transverse vibration amplitude Ay/D of circular cylinder simulated
y LES model are shown in Table 2, where A is the dimensional vibration amplitude equalling

√
2 times of the standard

eviation of displacement. The mesh resolution increases gradually from Mesh 1 to Mesh 3 and the change ratio of result

s shown in brackets. It is noticed that the difference of predicted vibration amplitudes between Mesh 2 and Mesh 3 is

ess than 3%, which is acceptable for the convergence criterion of engineering applications. Thus, Mesh 2 is used in the

ollowing simulations in consideration of both accuracy and efficiency.
6
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Fig. 4. Variation of (a) mean drag coefficients CD mean , (b) fluctuating drag coefficients CD rms , (c) fluctuating lift coefficients CL rms , (d) non-dimensional
ortex shedding frequency fv/fn and (e) phase angle Φ between lift force and transverse displacement with Ur for the circular cylinder with 2DOF
inear system.

. VIV of circular cylinder with 2DOF linear system

The free-vibration of circular cylinder with 2DOF linear system under the reduced velocity Ur from 2 to 14 is simulated
y increasing Ur with a step of 2. A smaller step of 1 is used near the resonance velocity Ur = 6∼10 to catch the
haracteristics of VIV more clearly. Both fn and D are fixed while U is varied to change Ur in this series of simulations,
esulting in Re = 2000∼14000, which is same as the experiment setting of Jauvtis and Williamson (2004). The oscillation
nder each U is simulated for over 50 periods to get reasonable statistics. The predicted non-dimensional transverse and
r

7
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Fig. 5. Vibration trajectory of circular cylinder with 2DOF linear system.

Fig. 6. Phase angles between streamwise and transverse motion.

streamwise vibration amplitudes Ay/D and Ax/D as well as the non-dimensional transverse vibration frequency foy/fn by
k-ω model and LES model are shown in Fig. 3 compared with the experimental data of Jauvtis and Williamson (2004). It is
noticed that the vibration amplitude of circular cylinder firstly increases slightly at Ur = 2∼4, which belongs to the initial
branch. Then the vibration amplitude increases rapidly and gets its peak at Ur = 8. The increasing part include upper and
super upper branches distinguished by the vortex shedding mode which will be discussed later. After that the amplitude
decreases sharply at Ur = 8∼9. Finally, the amplitude decreases gradually at Ur = 9∼14, which belongs to the lower
branch. The trends of vibration amplitude for both transverse and streamwise directions are similar while the transverse
vibration is much more significant than the streamwise one. The vibration frequency in the transverse direction foy has two
dominating values corresponding to the structure natural frequency and the vortex shedding frequency of fixed cylinder
at Ur = 2. The former one is neglected in the experimental results of Jauvtis and Williamson (2004), but shown in Khalak
and Williamson (1999). foy generally increases with the reduced velocity Ur and is separated for different branches. The
maximum vibration amplitude and the critical reduced velocity of transition from super upper branch to lower branch
are underestimated by SST k-ω model but well predicted by LES model.
8
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Fig. 7. Time history of transverse displacement y/D and lift coefficient CL and contours of vorticity ωz simulated by SST k-ω model for the circular
cylinder with 2DOF linear system.

Fig. 4 illustrates the numerical results of mean drag coefficients CD mean, fluctuating drag coefficients CD rms, fluctuating
lift coefficients CL rms, non-dimensional vortex shedding frequency fv/fn and phase angle Φ between lift force and
transverse displacement for the circular cylinder with 2DOF linear system. The mean drag coefficient C and
D mean

9
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w

f

T

Fig. 8. Time history of transverse displacement y/D and lift coefficient CL and contours of vorticity simulated by LES model for the circular cylinder
ith 2DOF linear system.

luctuating drag coefficients CD rms are the mean value and root mean square error of drag coefficient CD = FD/(0.5ρU2DL).

he fluctuating lift coefficient C is the root mean square of lift coefficient C = F /(0.5ρU2DL). The vortex shedding
L rms L L

10
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m

Fig. 9. The vortex cores around the circular cylinder with 2DOF linear system simulated by LES model.

Fig. 10. Spectra of displacement and force coefficients of circular cylinder with 2DOF linear system simulated by (a) SST k-ω model and (b) LES
odel at Ur = 8.

frequency fv is obtained by the spectrum analysis of lift force on cylinders. The experiment results of Jauvtis and
Williamson (2004) are also shown in these figures for comparison. It can be seen that in the initial branch CD mean and CL rms
increase with Ur , while CD rms decreases with Ur following the trend of streamwise vibration amplitude Ax. All of these
three force coefficients increase with Ur in the upper branch and decrease with Ur in the super upper branch. After the
transition from the super upper branch to the lower branch, they suddenly drop down and gradually decrease with Ur . The
vortex shedding frequency fv follows the constant St of about 0.22 in the unsympathetic region, while it keeps close to the
structural natural frequency fn in the sympathetic region, which shows an apparent ‘‘lock in’’ phenomenon. Particularly,
fv in the super upper branch has two dominating frequencies which will be discussed later. The phase angle Φ between
lift force and transverse displacement is close to zero for U ≤ 8 and change to about 180◦ for U ≥ 9. The predicted
r r

11
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Fig. 11. Averaged (a) transverse displacement, (b) transverse velocity, (c) lift coefficient, (d) energy transfer rate and (e) energy transfer in one cycle
f oscillation at Ur = 8 for the circular cylinder with 2DOF linear system.

CD mean, CD rms, CL rms and Φ by LES model agree well with the experiment data. The critical velocity of the transition from
he super upper branch to the lower branch is underestimated by SST k-ω model.

The vibration trajectories and phase angles θ between streamwise and transverse motions simulated by SST k-ω and
ES models are compared with the experiment results of Jauvtis and Williamson (2004) as shown in Figs. 5 and 6. It
s found that the in-line-shaped and cross-line-shaped trajectories occur in the initial and lower branches respectively.
ight-shaped trajectory happens in the upper branch which is a typical trajectory of the 2DOF VIV of circular cylinder
bserved in the previous study (Blackburn and Karniadakis, 1993). The crescent-shaped trajectory happens in the super
pper branch with the maximum vibration amplitude and indicates the phase angles θ between the streamwise and
ransverse motions is close to 270◦ (Jauvtis and Williamson, 2004). The vibration trajectories in different branches are
ell reproduced by LES model, however the crescent-shaped trajectory with the maximum vibration amplitude is failed
o reproduce by SST k-ω model.
12
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Fig. 12. Variation of (a) non-dimensional transverse amplitude Ay/D, (b) non-dimensional streamwise amplitude Ax/D and (c) non-dimensional
ransverse frequency foy/fn of free vibration with Ur for circular cylinder with 2DOF nonlinear system.

The time history of non-dimensional transverse displacement y/D and lift coefficient CL as well as the contours of
non-dimensional spanwise vorticity ωz for the circular cylinder with 2DOF linear system simulated by SST k-ω model are
shown in Fig. 7, where ωz is defined as (∂uy/∂x-∂ux/∂y)/ (U/D). Four different phases in a cycle of oscillation are presented
with T standing for the period of oscillation and t0 denoting the time when the cylinder is located in the balance position
and has the positive velocity. The results of Ur = 2, 6, 8 and 10 are shown for example. It shows the simulated vortices
with SST k-ω model are regular. Two pairs of uniform-sign vortices shed per cycle of oscillation and lead the in-phase
y/D and CL at Ur = 2 and 6. Two pairs of opposite-sign vortices shed per vibration period and lead the out-of-phase y/D
and CL at Ur = 8 and 10.

The time histories of non-dimensional displacement y/D and lift coefficient CL as well as the contours of non-
imensional spanwise vorticity ωz at the middle plane z/L = 0.5 for the circular cylinder with 2DOF linear system
imulated by LES model are shown in Fig. 8. It is found that two parallel vortices shed per vibration period in the initial
ranches with Ur = 2 and form the side-by-side 2S vortex shedding mode. Two single vortices shed alternately in both
ides of circular cylinder in the upper branches with Ur = 6 and form the 2S vortex shedding mode. At the super upper
ranch with Ur = 8, the maximum vibration amplitude occurs and the 2T vortex shedding mode forms. There are two
arge single vortices and two small vortex pairs shed alternately in a cycle of oscillation, which forms two triplets of
ortices shedding per oscillation period. The two large single vortices lead large peaks of CL when the circular cylinder
eaches the maximum and minimum displacement, which is named as the first vortex shedding. The two small vortex
airs lead four small peaks of CL when the circular cylinder passes the balance position, which is named as the second
ortex shedding. The 2P vortex shedding mode appears in the lower branch with Ur = 10. The transition of vortex
hedding mode from 2T to 2P leads the change of phase between y/D and CL from in-phase to out-of-phase. The variation
f vortex shedding mode with reduced velocity Ur simulated by LES model agrees well with the PIV experimental results
f Jauvtis and Williamson (2004).
13
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s

Fig. 13. Variation of (a) mean drag coefficients CD mean , (b) fluctuating drag coefficients CD rms , (c) fluctuating lift coefficients CL rms , (d) non-dimensional
vortex shedding frequency fv/fn and (e) phase angle Φ between lift force and transverse displacement with Ur for the circular cylinder with 2DOF
nonlinear system.

The vortex cores around the circular cylinder with 2DOF linear system simulated by LES model are shown in Fig. 9. The
vortex cores are visualized by iso-surfaces of the non-dimensional second negative eigenvalue e2 of the tensor S̃2 + Ω̃2

using the method proposed by Jeong and Hussain (1995). e2 = λ2/(U/D)2 is set as −0.2 with λ2 being the dimensional
econd negative eigenvalue of the tensor S̃2 + Ω̃2. S̃ and Ω̃ are the symmetric and antisymmetric components of the
14
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s
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Fig. 14. Vibration trajectory of circular cylinder with 2DOF nonlinear system.

velocity-gradient tensor ∇ũ. S̃ij is defined in Eq. (5) and Ω̃ij is expressed as

Ω̃ij =
1
2

(
∂ ũi

∂xj
−

∂ ũj

∂xi

)
(14)

These iso-surfaces are coloured by the non-dimensional spanwise vorticity ωz and are at the transient time t = t0 +

T /4 when the cylinder gets the maximum transverse displacement. It is found that in the initial branch with Ur = 2 the
vortices shed from the cylinder are relatively two-dimensional in the near wake and more three-dimensional in the far
wake. The centre lines of the vortices are almost parallel to the cylinder in the near wake, but inclined in the far wake.
In the upper branch with Ur = 6, the wake is the strongest and the regular Karman vortex street is the longest. As a
result, CD rms and CL rms reach the maximum values. At the super upper branch with Ur = 8, the three-dimensionality of
flow field is quite strong due to the 2T vortex shedding mode and the centre lines of the vortices are inclined in the near
wake of cylinder, so that CD rms and CL rms are smaller than those at Ur = 6. In the lower branch with Ur = 10, a short
wake forms and leads small CD rms and CL rms.

The spectra of non-dimensional streamwise displacement x/D, non-dimensional transverse displacement y/D, drag
coefficient CD and lift coefficient CL of circular cylinder with 2DOF linear system simulated by SST k-ω model and LES
model at Ur = 8 with the peak vibration amplitude are shown in Fig. 10. It is found that in the results with LES model
x/D, y/D and CD are generally harmonic with one dominating frequency of foy. CL has two dominating frequencies of foy
and 3foy, and the foy component of CL is larger than the 3foy component, same as the experimental phenomenon of Jauvtis
and Williamson (2004). Combining with the time history of CL shown in Fig. 8, it can be seen that the foy component of
CL corresponds the first vortex shedding and the 3foy component is caused by the second vortex shedding. The peaks of
spectra of x/D and CD are almost same and located at 2foy. In the simulation with SST k-ω model, the 3foy component of
CL is negligible because the second vortex shedding cannot be simulated successfully.

The energy transfer from the fluid to the circular cylinder is analysed based on the numerical results with SST k-ω
model and LES model according to the research of Jauvtis and Williamson (2004) and Carberry et al. (2005). The averaged
transverse displacement y/D, transverse velocity vy/D, lift coefficient CL, energy transfer rate ė and energy transfer e in one
cycle of oscillation at the super upper branch with Ur = 8 are shown in Fig. 11, where the energy transfer rate ė is defined
as ė = CL · ẏ/D and the energy transfer e is calculated by e =

∫ T
0 ėdt . In the LES study, the first vortex shedding happens

when the cylinder reaches the maximum and minimum transverse displacement and the second vortex shedding happens
when the cylinder passes the balance position, which leads peak values of CL. As the y/D and CL are in-phase, the positive
energy transfer rate from the fluid to the cylinder is generated just before the vortex shedding and happens four times
in one cycle of oscillation. As a result, the total energy transfer from the fluid to the cylinder is positive and has a large
magnitude, which leads the large vibration amplitude. In the simulation by SST k-ω model, there is only the first vortex
shedding. As the y/D and CL are out-of-phase, the positive energy transfer rate from the fluid to the cylinder is generated
just after the vortex shedding and happens two times in one period of oscillation. The total energy transfer from the fluid
to the cylinder is positive but small, which leads the smaller vibration amplitude than the one of LES results. In addition,
in the SST k-ω simulation the positive energy transfer rate occurs when the cylinder is approaching the balance position
and has large velocity. Therefore, even the CL rms is small, the energy transfer rate is still considerable and leads significant
vibration amplitude.

4. VIV of circular cylinder with 2DOF nonlinear system

The free-vibration of circular cylinder with 2DOF nonlinear system under the reduced velocity Ur from 2 to 14 is
imulated by increasing Ur with a step of 2. A smaller step of 1 is used near Ur = 6∼10, being consistent with that
for the 2DOF linear system. Both fn and D are fixed, while U is varied to change Ur in these simulations, resulting in Re
= 2000∼14000. The predicted non-dimensional transverse and streamwise vibration amplitudes Ay/D and Ax/D as well
s the non-dimensional transverse vibration frequency f /f of circular cylinder simulated by LES model are shown in
oy n

15
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Fig. 15. Time history of transverse displacement and lift coefficients and contours of vorticity simulated with LES model for the circular cylinder
with 2DOF nonlinear system.

Fig. 12. It is found that both streamwise and transverse vibration amplitudes of circular cylinder with 2DOF nonlinear
system increase with the reduced velocity U and approach asymptotes at high U , similar to the classic galloping. This
r r

16



T. Li and T. Ishihara Journal of Fluids and Structures 107 (2021) 103415

p
n
t

l
t
i

Fig. 16. The vortex cores around the circular cylinder with 2DOF nonlinear system simulated by LES model.

Fig. 17. Spectra of displacement and force coefficients of circular cylinder with 2DOF nonlinear system simulated by LES model at Ur = 10.

henomenon was also found by Mackowski and Williamson (2013) and Huynh et al. (2015) through the experiments with
onlinear circular cylinders. The transverse vibration frequency foy of cylinder with 2DOF nonlinear system also continues
o increase with the reduced velocity Ur even at a high Ur .

Fig. 13 illustrates the numerical results of mean drag coefficients CD mean, fluctuating drag coefficients CD rms, fluctuating
ift coefficients CL rms, non-dimensional vortex shedding frequency fv/fn and phase angle Φ between lift force and
ransverse displacement for the circular cylinder with 2DOF nonlinear system. It is found that CD mean and CD rms generally
ncrease with U , which is distinguished with the results of circular cylinder with 2DOF linear system. C shows a
r L rms
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Fig. 18. Variation of non-dimensional transverse amplitude Ay/D of circular cylinder with U∗ .

onvergent pattern, but remains significant at high Ur . The fv has two dominating frequencies upon Ur = 9. The lift force
nd transverse displacement are always in-phase for the cylinder with nonlinear system.
The predicted vibration trajectory of the circular cylinder with 2DOF nonlinear system is shown in Fig. 14. It is found

hat the in-line-shaped and eight-shaped trajectories occur at Ur = 2, 6 and 8 respectively, which are similar to those
ith 2DOF linear system. However, the trajectory keeps as the crescent-shape when Ur is larger than 9, which indicates
he phase angle between the streamwise and transverse directions tends to 270◦ as Ur increases.

The time histories of non-dimensional displacement y/D and lift coefficient CL as well as the contours of non-
imensional spanwise vorticity ωz at different phases in a cycle of oscillation for the circular cylinder with 2DOF nonlinear
ystem simulated by LES model are shown in Fig. 15. The results of Ur = 2, 6, 8 and 10 are shown for example. It is found
t the reduced velocity Ur = 2, the side-by-side 2S vortex shedding pattern forms and then changes to the staggered 2S
ode. As Ur increases, the vortex shedding mode changes to the 2S mode at Ur = 6 and 8. The 2T mode forms at Ur = 9

and keeps until the simulated maximal reduced velocity Ur = 14. The characteristics of y/D, CL and ωz at Ur = 9∼14 for
he circular cylinder with 2DOF nonlinear system are similar to those in the super upper branch of cylinder with 2DOF
inear system.

The vortex core around the circular cylinder with 2DOF nonlinear system simulated by LES model are shown in Fig. 16.
t the reduced velocity Ur = 2∼8, the near wake after the cylinder is relatively two-dimensional, which is similar to the
nes in the initial and upper branch of the cylinder with 2DOF linear system. As Ur increases, the vortex shedding mode
hanges to the 2T mode from Ur = 9 and keeps as the 2T mode until the simulated maximum Ur = 14. The three-
imensionalities are quite significant in the near wake and the centre lines of vortex cores are inclined to the cylinder
or Ur = 9∼14, which is also similar to the phenomenon in the super upper branch of cylinder with 2DOF linear system.

The spectra of non-dimensional streamwise displacement x/D, non-dimensional transverse displacement y/D, drag
coefficient CD and lift coefficient CL simulated by LES model for the circular cylinder with 2DOF nonlinear system at
Ur = 10 are shown in Fig. 17. It is seen that x/D, y/D and CD are generally harmonic with one dominating frequency. CL
has two dominating frequencies including foy component and 3foy component, which is similar with the phenomenon in
the super upper branch of circular cylinder with 2DOF linear system. The dominating frequency of x/D and CD are same
nd located at the twice of transverse vibration frequency foy.
The nonlinearity defined in this research makes the nonlinear system stiffer than the linear system, and the stiffness

increases with the vibration amplitude. As a result, the transverse vibration frequency foy increases with the reduced
velocity Ur as shown in Fig. 12. The variation of non-dimensional transverse vibration amplitude Ay/D of circular cylinder
ith a modified reduced velocity U∗ is shown in Fig. 18, where U∗ is defined as

U∗
=

U
foyD

(15)

It is found that the responses of linear and nonlinear cylinders share the same rule. With the increasing inflow velocity,
the transverse vibration frequency foy of nonlinear cylinder increases and makes the U∗ increase slowly or even keep
constant. As a result, the nonlinear cylinder keeps in the super upper branch in a wide range of velocity. It means the
galloping-like vibration of the nonlinear circular cylinder is induced by the amplitude-dependent stiffness of system. The
relationship of the modified reduced velocity U∗ and vibration amplitude is insensitive to the nonlinearity of the cylinder
system and U∗ is a more universal variable to describe the vibration characteristics than U .
r

18



T. Li and T. Ishihara Journal of Fluids and Structures 107 (2021) 103415

f
n
T
w

Fig. A.1. Schematic of geometrical nonlinear system.

Fig. A.2. Variation of geometrical nonlinear coefficient α with L0/H for different H/D.

5. Conclusions

The vortex-induced vibration of circular cylinder in uniform flow with two-degree-of-freedom and geometrical
nonlinear system is investigated using SST k-ω and LES turbulence models. The characteristics of vibration amplitude,
fluid force coefficient, branching behaviour, vibration trajectory, energy transfer and vortex shedding mode of circular
cylinder in VIV are investigated. The main conclusions are as follows:

(1) The vibration amplitude, fluid force coefficient, branching behaviour, vibration trajectory and vortex shedding mode
of circular cylinder with 2DOF linear system in VIV are well reproduced by the LES turbulence model, while the maximum
vibration amplitude is underestimated and the super upper branch of VIV cannot be reproduced by the SST k-ω model.

(2) In the super upper branch of VIV for the circular cylinder with 2DOF linear system, the 2T vortex shedding mode
happens and leads foy and 3foy components of lift force, which are related to the first and second vortex shedding
respectively. The second vortex shedding increases the energy transfer from the fluid to the cylinder and causes the
maximum vibration amplitude.

(3) The vibration amplitude keeps increasing with the reduced velocity Ur and shows a galloping-like phenomenon
or the circular cylinder with 2DOF nonlinear system. The vibration characteristics of circular cylinder with 2DOF
onlinear system at high velocity are similar to that in the super upper branch of cylinder with 2DOF linear system.
his phenomenon is induced by the amplitude-dependent stiffness of system and the variation of vibration amplitude
ith the modified reduced velocity U∗ is universal for the circular cylinder with linear and nonlinear systems.
19
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Appendix. Derivation of duffing equation considering geometrical nonlinearity

The circular cylinder of mass m is connected to the fixed boundary by the linear spring of negligible mass as shown in
Fig. A.1. The natural length of each spring is L0 and the spring constant is Λ. The distance between cylinder and boundary
is H where H > L0.

When the cylinder is displaced horizontally with a distance x, the restoring force F equals

F = Λ

(√
H2 + x2 − L0

L0

)
(A.1)

Newton’s second law and cosϕ =
x√

H2+x2
yield

m
d2x
dt2

= −2F cosϕ = −
2Λ
L0

x
(
1 −

L0
√
H2 + x2

)
(A.2)

When the displacement x is small compared with H, the inverse square root term may be replaced by a truncated
aclaurin expansion. On keeping two terms in the expansion, it is obtained as

d2x
dt2

= −
2Λ
mL0

x
[
1 −

L0
H

(
1 −

1
2

x2

H2

)]
(A.3)

Introducing the nondimensional displacement X = x/D and the frequency related parameter Ω =

√
2Λ(H−L0)

mL0H
, the

overning equation becomes

d2X
dt2

= −Ω2
[
X +

L0
2(H − L0)

D2

H2 X
3
]

(A.4)

Then on introducing nondimensional time τ = Ωt and the geometrical nonlinear coefficient α =
L0D2

2(H−L0)H2 , the Duffing
quation is obtained as

d2X
dτ 2 + X + αX3

= 0 (A.5)

If setting the parameters as γ = L0/H and η = H/D, it yields α =
γ

2(1−γ )η2
. The relationship between α and L0/H for

ifferent H/D is shown in Fig. A.2. It is found that the geometrical nonlinearity is significant when L0 is close to H.
When the geometrical nonlinear coefficient α = 0.7 is assumed as mentioned by Srinil and Zanganeh (2012), the

relationship between γ and η is expressed as

γ =
1.4η3

1 + 1.4η2 (A.6)

Fig. A.3 shows the relationship between L0/D and H/D. It is obvious that α = 0.7 is a good approximation when L0 is
ong compared with D and close to H.
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