風車後流の数値予測と解析モデルの提案

Numerical and Analytical Study of Wind Turbine Wakes

石原 孟¹⁾ 銭 国偉²⁾

Takeshi ISHIHARA¹⁾ Guowei QIAN²⁾,

ABSTRACT

The present work is devoted to develop a numerical wind tunnel to study the wind turbine wake in turbulent boundary layer flow by using large eddy simulation (LES). The turbine induced forces, including thrust and torque force, are modeled by using the actuator disk model with rotation (ADM-R). Characteristics of mean and turbulence in the wake of miniature as well as real scale wind turbine are examined and compared well with the experiment data. A new analytical wake model based on the numerical simulation result is proposed by systematical analysis of the ambient turbulence intensity and thrust coefficient of rotor. The velocity deficit and turbulence increment in the wake predicted by the new wake model show favorable agreement with the LES data both in near and far wake region.

Key Words: Wind turbine wake, Large eddy simulation, Actuator disk model, A new analytical wake model.

1. はじめに

ウィンドファーム内の風車後流は後方風車での発電量の減少や疲労荷重の増大をもたらすため、ウィンドファ ームを設計する際にはその影響を正しく評価することが不可欠である.従来、風車後流の乱流特性を調べるため に用いられてきた風洞実験では、計測における制約から詳細な乱流構造の把握が難しい¹⁾.近年、乱流場の詳細構 造を一度に把握できる数値流体解析が用いられるようになったが、風車後流を支配するパラメータである大気の 乱流強度とロータのスラスト係数に対して、系統的に解析を行った例は少ない²⁾.一方、実務においては解析モデ ルも広く用いられている.しかし、現状ではモデルの予測精度および普遍性に関して問題が残されている^{3),4),5)}. さらに、我が国のウィンドファームでは従来のモデルで想定されていないような短い間隔で風車を配置する場合 があり、風車近傍の後流を予測できるモデルの開発は急務である.

そこで、本研究では、まず、大気の乱流強度とロータのスラスト係数を系統的に変化させて LES による数値流 体解析を行い、これらの支配パラメータが風車後流に与える影響を明らかにする.そして、これらの解析結果に 基づき、様々な大気の乱流強度とロータのスラスト係数に対して、風車近傍から遠方まで後流の予測が可能な解 析モデルを提案する.

2. 数値解析手法と解析結果

本研究では、数値流体解析手法として LES を用いた.非圧縮性流体の連続式およびナビエストークス方程式の 各項を空間平均したものが次式である.

$\frac{\partial \rho u_i}{\partial x_i} = 0$	(1)
$\frac{\partial}{\partial t} \left(\rho \overline{u_i} \right) + \frac{\partial}{\partial x_j} \left(\rho \overline{u_i u_j} \right) = \frac{\partial}{\partial x_j} \left(\mu \frac{\partial \overline{u_i}}{\partial x_j} \right) - \frac{\partial \overline{P}}{\partial x_i} - \frac{\partial \tau_{ij}}{\partial x_j} + f_i$	(2)

1)東京大学大学院工学系研究科	社会基盤学専攻	教授	$(\mp 113 - 8656$	文京区本郷 7-3-1)
2)東京大学大学院工学系研究科	社会基盤学専攻	大学院生	$(\pm 113 - 8656)$	文京区本郷 7-3-1)

ここで、 $\overline{u_i}$ と \overline{P} はそれぞれ格子平均化された風速および圧力 であり、 ρ は流体の密度、 μ は流体の粘性係数を表す。 f_i は 風車が流れ場にもたらす外力を再現するためのソース項であ る. また、 τ_i はサブグリッドスケールのレイノルズ応力であ り、Smagorinsky-Lilly モデルによりモデル化した。

$$\tau_{ii} \equiv \rho u_i u_j - \rho u_i u_j \tag{3}$$

SGS のレイノルズ応力は未知数であるためモデル化を行う必要があり、ブシネスク仮説を用いて以下のように表すことができる.

$$\tau_{ij} \equiv -2\mu_t \overline{S_{ij}} + \frac{1}{3}\tau_{kk}\delta_{ij} \tag{4}$$

ただし, μ_i は SGS の乱流粘性係数, $\overline{S_{ij}}$ はひずみ速度テンソルであり,次式で定義される.

$$\overline{S_{ij}} \equiv \frac{1}{2} \left(\frac{\partial \overline{u_i}}{\partial x_j} + \frac{\partial \overline{u_j}}{\partial x_i} \right)$$
(5)

SGS の乱流粘性係数 μ_i については Smagorinsky-Lilly モ デル ⁶⁰を用いて,次式によってモデル化する.

$$\mu_t = \rho L_s^2 \left| \overline{S} \right| = \rho L_s \sqrt{2 \overline{S_{ij}} S_{ij}} \tag{6}$$

ただし、 L_s は SGS 成分の混合距離であり、本研究では以下の ようにして計算する.

$$L_{S} = \min(\kappa \delta, C_{S} V^{1/3}) \tag{7}$$

 κ はカルマン定数 0.42 であり、 C_s は Smagorinsky 定数、 δ は格子の中心から最も近い壁面までの距離、Vは計算格子の 体積を表す、 C_s の値には 0.032 を用いた⁶⁾.

本解析では ADM-R (Actuator Disk Model with Rotation) を用いて、風車のブレードの回転運動が乱流場に 及ぼす影響を再現した. ロータ中心からの距離が $r で幅\delta r をもった翼素に作用する流体力と風速と$ $の関係を図1に示す.ここで、<math>U_{\alpha}$ は流入風速度、 1 Ωは回転速度、流入角 φ は相対風速と掃過面とが 3 なす角、 $a \geq a'$ はそれぞれ主流方向と回転方向の 4 誘導係数であり、 $x \geq \theta$ はそれぞれ主流方向とブ レードの回転方向を表し、揚力 dF_L と抗力 dF_D とと もに翼素運動量理論 η によって求める. ADM-R 8 では風車ロータを円盤とみなし、翼素運動量理論 η から求まる流体力を翼素が掃過する円環上に分

布荷重として与える. 翼素運動量理論の詳細については文献7を参照されたい. 本研究では, Ishihara ら ¹⁰の風

表1 各ケースの解析条件

Case	乱れ	WT-Type	TSR	Pitch	$C_{D,t}$	$C_{D,n}$	C_T
1	Low	風車なし	-	-	-		-
2	High	風車なし	-	-	-	E.	-
3	Low	模型風車	5.52	0	1.0	0.74	0.37
4	Low	模型風車	9.69	0	1.0	0.74	0.81
5	High	模型風車	5.52	0	1.0	0.74	0.37
6	High	模型風車	9.69	0	1.0	0.74	0.81
7	Low	実風車	5.66	7.4	0.6	0.74	0.36
8	Low	実風車	8.89	0	0.6	0.74	0.84
9	High	実風車	5.66	7.4	0.6	0.74	0.36
10	High	実風車	8.89	0	0.6	0.74	0.84

洞実験と同様にスパイヤーとフェンスを用いて,大気境界層を作成した(図 2).水平方向,鉛直方向の最小格子 幅はそれぞれ 1cm および 0.2cm とした.

図5 各ケース速度欠損と乱流強度増分

風車モデルとしては, Ishihara ら ¹⁰の風洞実験で用いた三菱重工業の 1000kW の 1/100 スケール模型風車に加 え,銚子沖の三菱重工業の 2400kW の洋上風車も用いた.模型風車のブレードモデルは低レイノルズでの空気力 係数を用い,周速比は風洞実験に合わせて設定した.なお,模型風車ではモーターを用いて強制的に回転させて いる。実風車のブレードモデルと制御モデルについては、山口ら8によって構築されたものを用いた(図3).

解析対象としては、定格出力後(CT \approx 0.35)と定格出力前(CT \approx 0.8)の2種類の運転状態および洋上と陸上の2つの乱流状態を選んだ。各ケースの解析条件は表1に示す.TSRとPitchはそれぞれ周速比(Tip Speed Ratio)とピッチ角度、 $C_{D,t}$ と $C_{D,n}$ はタワーとナセルの抗力係数を表し、 C_T はスラスト係数である。

図4には、風車設置前(0D)及び風車後流内(2D,8D)の平均風速と変動風速の解析結果を示す.ここで、D は風車直径を表す.またそれぞれの値はハブ高さでの平均風速 U_bで無次元化した.白丸は風洞実験の結果を表し、 点線と実線はそれぞれ模型風車と実風車のスラスト係数を用いた結果を示す.数値解析結果が風洞実験の結果と よく一致しており、構築した数値風洞および数値風車モデルが高い精度を有することを示した.また、模型風車 と実風車を対象とした解析結果を比較すると、スラスト係数が同じであれば、両者の間に大きな差はない.この ことから、風車のスケールおよび風車制御の条件によらず、スラスト係数を風車後流の支配パラメータとして用 いることが妥当性であることが分かる.

図 5(a)は Case7~Case10 における x=2D および x=8D での速度欠損の水平分布を示し, Ishihara ら ¹により導出したガウス分布により近似できることが分かる.図 5(b)は乱流強度増分の水平分布を示す.乱流強度の増分は 翼端位置で最大値を示すために,ガウス分布の中心を翼端位置に移動して,解析結果と一緒に示した.翼端の内 側については翼端が描く円環上で発生した乱流の重ね合わせにより評価できるため,ここで外側の分布のみ示した.図 5(b)から,乱流強度増分もガウス分布により近似できることが分かる.

3. 新しい解析モデルの提案

風車ロータにより生じる後流の速度欠損と乱流強度増分のモデル化において、ロータの回転軸に対して軸対称 と仮定すれば、後流内の各位置における平均風速*U*(*x*,*y*,*z*)は、風車位置における流入風の平均風速*U*₀(*y*,*z*)と風車に

より生じる速度欠損 $\Delta U(x,r)$ を用いて、変動風 速標準偏差 $\sigma_1(x,y,z)$ は風車位置における流 入風の変動風速標準偏差 $\sigma_0(y,z)$ と風車によ り生じる乱流増分 $\Delta \sigma_1(x,r)$ を用いて、次式に より表せる.

 $U(x, y, z) = U_0(y, z) - \Delta U(x, r)$ (8) $\sigma_1(x, y, z) = \sqrt{\sigma_0^2(y, z) + \Delta \sigma_1^2(x, r)}$ (9)

ここで、
$$r = \sqrt{y^2 + z^2}$$
である.後流内の各

断面における速度欠損と乱流増分の分布は 相似であると仮定すれば,式(8)と(9)はそれぞ れ後流位置の関数で表す最大値と半径方向 位置の関数で表す分布関数の積として,次 式により表すことができる.

 $\Delta U(x,r)/U_h = f(x/D)\phi(r/\sigma)$ (10)

 $\Delta I_1(x,r) = \Delta \sigma_1(x,r)/U_h = g(x/D) \phi(r/\sigma)$ (11) ここで、 D はロータ直径、 σ は後流の各断面 における速度欠損から求めた標準偏差であ り、 後流位置 x の関数である. 分布関数 $\phi(r/\sigma) \geq \phi(r/\sigma)$ の最大値は 1 である.

図 6 ロータ中心高さにおける速度欠損の距離方向変化 (a)Case7, (b)Case8, (c)Case9, (d)Case10.

3.1 速度欠損のモデル化

風車後流中心軸における速度欠損 f(x/D)のモデル化を考える.一般に、風車後流における速度欠損は、ロータ のスラスト係数 C_r , 大気の乱流強度 I_μ および風車後方の距離 x/Dの関数になっている.速度欠損は距離 x/Dに反 比例することを考えると,次式によりモデル化した.

$$f(x/D) = \frac{1}{\left(a+b\cdot x/D+p\right)^c}$$
(12)

ここで、*a*、*b*、*c*はモデルパラメータであり、*p*は本研究で新たに導入した風車後流近傍における速度欠損の補 正項を表す.風車遠方においては、Bastankhah & Porte-Agle³⁾が運動量保存則を利用して導出した解析解をテー ラ展開し、x/Dの一次近似解からc=2が導かれる.一方、 $a \ge b$ はロータのスラスト係数 C_r と大気の乱流強度 I_{μ} の 関数と仮定し、本研究の解析結果に基づくパラメータ同定により、次式を得た.

 $a = 0.93C_T^{-0.75}I_{1h}^{0.17}$, $b = 0.42C_T^{0.6}I_{1h}^{0.2}$ (13)

また,風車後流近傍の補正項 pについても パラメータ同定を行い、次式が得られた.

 $p = 0.15C_T^{-0.25}I_{1h}^{-0.7}(1+x/D)^{-2}$ (14)

図6には本研究の各ケースの数値解析結果 と解析解による結果の比較を示す. 白丸は数 値解析結果、点線は Katic ら 4)が提案したモ デルの結果、実線は本研究で提案したモデル の結果である、従来のモデルに比べ、本モデ ルは数値解析結果と一致していることが分 かる.

本研究では、分布関数 は Ishihara ら¹⁾の 研究に従い、次式に示すガウス分布を用いた、

$$\phi(r/\sigma) = \exp\left(-\frac{r^2}{2\sigma^2}\right) \tag{15}$$

また Bastankhah & Porte-Agle 3)のモデル と本研究で提案したモデルと比較すること により、次式を得る.

 $\sigma = 0.23C_T^{-0.25}I_{1h}^{0.2}D + 0.11C_T^{1.1}I_{1h}^{0.2}x$ (16)

図7 ロータ上端高さにおける乱流強度増分の距離方向変化 (a)Case7, (b)Case8, (c)Case9, (d)Case10.

2 乱流強度増分のモデル化

風車の後流内の変動風速の増分 u'u' と無次元化した乱流強度増分ΔI は以下の関係がある.

$$\Delta I_1(x,r) = \sigma_1(x,r)/U_h = \sqrt{u'u'}/U_h$$

(17)

移流速度および拡散係数は後流の位置によらず一定であると仮定すると、変動風速標準偏差の増分u'u'の輸送方 程式は Ishihara ら ¹⁾が提案した速度欠損の輸送方程式と同じ形になり、さらに式(17)の関係を考慮すると、風車 後流の翼端位置における乱流強度増分g(x/D)は次のように定式化できる.

$$g(x/D) = \frac{1}{d + e \cdot x/D + q} \tag{18}$$

ここで、qは風車後流近傍における乱流強度増分に対する補正項である.d、eはロータのスラスト係数Crおよび 大気の乱流強度I₁の関数としてモデル化することができる.本研究の数値解析結果を用いてパラメータ同定を行 い、次式が得られた.

$$d = 2.3C_T^{-1.2}, \quad e = 1.0I_{1h}^{0.1} \tag{19}$$

また、風車後流近傍の補正項 qについてもパラメータ同定を行い、次式が得られた. (20)

 $q = 0.15C_T^{-0.25}I_{1h}^{-0.7}(1+x/D)^{-2}$

図7は本研究の各ケースの数値解析結果と解析解 による結果との比較を示す. 白丸は数値解析結果, 点線は Crespo & Hernandez⁵⁾により提案したモデ ルの結果,実線は本研究で提案したモデルの結果で ある. 従来のモデルに比べ、本研究で提案したモデ ルは数値解析結果と一致していることが分かる.

最後に乱流強度増分の分布関数 は次式で表す.

$$\varphi(r/\sigma) = \begin{cases} k_{1} \exp\left(-\frac{(r-D/2)^{2}}{2\sigma^{2}}\right) + k_{2} \exp\left(-\frac{(r+D/2)^{2}}{2\sigma^{2}}\right) & , r \le D/2 \end{cases}$$

$$\exp\left(-\frac{(r-D/2)^{2}}{2\sigma^{2}}\right) & , r > D/2 \end{cases}$$

$$k_{1} = \cos^{2}\left(\frac{\pi}{2}\left(\frac{r}{D} + \frac{1}{2}\right)\right), \quad k_{2} = \cos^{2}\left(\frac{\pi}{2}\left(\frac{r}{D} - \frac{1}{2}\right)\right)$$
(22)

ここで, σは各断面における風速欠損分布の分散 であり、乱流強度増分の分布関数にも適用した.

図8は本研究の各ケースの数値解析結果と解析解 の結果との比較を示す. 白丸は数値解析結果, 点線 はそれぞれ Katic ら 4が提案した平均風速に関する モデルの結果および Crespo & Hernandez⁵⁾が提案 した乱流強度増分に関するモデルの結果,実線は本 研究が提案したモデルの結果を表す.図8から、従 来モデルに比べ,本研究で提案したモデルの予測精 度が大きく向上したことが分かる.

図 8 無次元化した平均風速と変動風速標準偏差の水平分布 (a)Case3,7, (b)Case4,8, (c)Case5,9, (d)Case6,10.

4. まとめ

本研究では、大気の乱流強度と風車ロータのスラスト係数を系統的に変化させ、LES モデルを用いた数値流体 解析を行い、以下の結論を得た.

- 1. 本研究で構築した数値風洞および数値風車モデルが高い予測精度を有し,数値解析結果は風洞実験の結果 とよく一致した.
- 2. 風車後流近傍から遠方までに適用可能な解析モデルを提案し、様々な大気の乱流強度と風車ロータのスラ スト係数に対し、よい予測精度を示した.

参考文献

- 1. Ishihara T., Yamaguchi A., Fujino Y., "Development of a new wake model based on a wind tunnel experiment", CD-ROM, Global Wind Power. (2004)
- 2. Wu, Y.T., Porté-Agel, F., "Large-eddy simulation of wind turbine wakes: Evaluation of turbine parameterisations", Bound. Laver Meteorol, (2011)
- 3. Bastankhah, M., Porté-Agel, F., "A new analytical mode for wind-turbine wakes", Renewable Energy, Vol. 70, pp. 116-123, (2014)
- 4. Katic, I., Højstrup, J., Jensen, N. O., "A simple model for cluster efficiency", European Wind Energy Association Conference and Exhibition, Rome, (1986)
- 5. Crespo, A., Hernández, J., "Turbulence characteristics in wind-turbine wakes", Journal of Wind Engineering and Industrial Aerodynamics, Vol. 61, pp. 71-85, (1996)
- 「一様流中に置かれた正方形角柱の空気力特性の数値予測に関する研究」,土木学会論文集,Vol62.No.1, 6.石原孟、岡新一, pp.78-.90, (2006).
- 7. Burton, T., Jenkins, N., Sharpe, D., Bossanyi, E., "Wind Energy Handbook, 2nd Edition," Wiley, (2011)
- 8. 山口敦, プラサンティ ウィディヤシ サリ, 石原孟, 「風力発電設備支持物に作用する発電時の荷重予測と実測による検証」, 第23回風工学シンポジウム論文集, pp.133-138, (2014)