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ABSTRACT
The analytical formulae of wind-induced load, wave-induced load and their combination are proposed for the tower of floating
offshore wind turbine systems by quasi-steady analysis. Sway-rocking model (SR model) is employed as the equivalent
calculation model. The formulae of wind-induced load are in the same format as those of fixed-foundation wind turbine,
but have different values for some critical parameters in resonant standard deviation. For wave-induced load, the standard
deviations due to surge and pitch motions are proposed separately and their combination is calculated with complete
quadratic combination (CQC) rule. For the total tower loading under wind and wave, the mean value depends on the wind
only, and the combination without considering any correlation can predict the standard deviation accurately. The Gaussian
peak factor is applicable to both wave-induced load and the total tower loading. All the proposed formulae are verified by
full dynamic simulation.
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1. INTRODUCTION
The offshore consists of a vast wind resource in deep water, where use of conventional bottom-
mounted wind turbines is not possible, and floating wind turbines are the most attractive [1–2]. The
extreme wind and wave conditions are more dominant than the normal conditions for the maximum
loading on the support structure of wind turbine in Japan. It is found by full dynamic simulation that
floater motion increases the tower loading compared to land-based wind turbine under the same
wind conditions. Thus, it is necessary to consider the wave effect on the tower loading to check the
serviceability of the wind turbines which are designed for the bottom-mounted systems. Since in the
extreme conditions the aerodynamic force due to the wave-induced motion can be neglected, which
means the coupling of wind-induced load and wave-induced load is very weak, in the preliminary
design it would make sense for each kind of load to be investigated independently, and then their
combination can be performed to get the final design value. In order to propose the analytical
formulae for the loads estimation by quasi-steady analysis, a reasonable calculation model of
floating offshore wind turbine system is necessary.

In this study, loads evaluation methods are discussed in Section 2; In Section 3, a sway-rocking
model (SR model) [3] is employed as the equivalent calculation model of a floating offshore wind
turbine system. The complex mooring system is modeled as two kinds of springs and dampers. The
stiffness and damping should be determined by free vibration simulation. In Section 4, the analytical
formulae for the estimation of wind-induced load and wave-induced load are proposed with the SR
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model by quasi-steady analysis. Section 5 presents the combination of wave-induced load and wind-
induced load. It is shown that the combination without considering any correlation can predict the
tower loading accurately. All the proposed formulae are verified by full dynamic simulation.

2. LOADS EVALUATION METHODS
In the previous study, the wind-induced tower loading can be evaluated by either full dynamic
simulation or quasi-steady analysis [4], and wave-induced tower loading is usually evaluated by full
dynamic simulation [5]. This study will investigate the quasi-steady analysis for both kinds of loads and
propose the analytical formulae to make the application more convenient and identify the dominant
influence factors as well. Hence, this study would be very useful for the optimization of floating wind
turbine systems. The full dynamic simulation is used as the validation of the proposed formulae.

2.1. Quasi-steady analysis
A coefficient called peak factor proposed by Davenport [6] to account for fluctuating wind load is
used in quasi-steady analysis for wind and wave induced loads in this study. The maximum bending
moment is estimated by eqn (1).

(1)

where M
—

is the mean bending moment, σ is the standard deviation, g is the peak factor.
The assumptions used in this study are listed below:

1.  For wave-induced load, the floater and wind turbine (three blades, hub, nacelle, tower)
can be modeled as 11 lumped masses in order to give a clear explanation about the tower
loading, since the aerodynamic force is not considered. The three blades are regarded as
rigid approximately and can be modeled as a concentrated mass above the tower top with
hub and nacelle together. The tower is divided into 10 masses with the floater mass added
to the tower base.

2.  Only the first mode is considered in the respective calculation of tower loading due to
surge and pitch motions because the first mode is much more dominant.

3.  The peak factor is proposed considering the response of the whole wind turbine, so it
doesn’t change with height. The bending moment-based peak factor in this study can be
used for the calculation of shear force on the wind turbine tower.

2.2. Full dynamic simulation
A fully nonlinear dynamic simulation code CAsT [5] is used to investigate the dynamic response of
floating offshore wind turbine systems considering the coupled interaction between wind turbine,
floater and mooring system. A summary of this numerical scheme is presented in Table 1. CAsT has
been verified by a water tank experiment, thus can give accurate and realistic prediction of floater
motion and tower loading due to wind and wave. This study employs CAsT to simulate the floater
motion and verify the analytical solution of tower loading. The general formulation of the
differential equation of motion for the structure is given at eqn (2):

(2)

where [M] is the mass matrix, [C] is the damping matrix, [K ] is the stiffness matrix, [F] is the
external force matrix.

2.3. Wind turbine system
This study uses a semi-submersible type floater installed with 5-MW baseline wind turbine
developed by NREL (National Renewable Energy Laboratory) and catenary mooring system to
investigate the tower loading in the extreme wind and wave conditions. The details of the floater are
given by Waris [5], and Jonkman [7] presents the details of the wind turbine. The salient features of
floater and basic properties of wind turbine are summarized in Table 2.

The catenary mooring system is considered to consist of three mooring lines, each having span
of 400 m. The mooring lines are separated at 120°, with front two lines having an angle of 60° with
the incident wind and wave, and the third aligned in the wind and wave direction. All the three lines
have a common fairlead at the base of the central column of the floater that supports the wind
turbine on top. The catenary mooring arrangement is shown in Figure 1.

σ= + ⋅M M g

 [ ] [ ] [ ] [ ]+ + =M x C x K x F
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3. SWAY-ROCKING MODEL
Since surge and pitch are two dominant floater motions under wind and wave [5], the SR model is used
as the equivalent calculation model to predict the tower loading. As shown in Figure 2(a), the complex
mooring system of floating wind turbine system is modeled as two kinds of springs and dampers. Surge
motion (sway) can be represented with the lateral spring and pitch motion (rocking) with rotational
spring. Different from the SR model in earthquake engineering, stiffness kS, kR and damping cS, cR should
be determined by free vibration simulation in this study. An extra vertical force is added to consider the
weight of the mooring system, offsetting the difference of buoyancy and the weight of wind turbine and
floater. It is noted that the full wind turbine model of Figure 2(a) has to be used for the estimation of
wind-induced load, while the lumped masses of Figure 2(b) can be used to determine the stiffness and
damping, and also for the estimation of wave-induced load. The lumped masses are listed in Table 3.

WIND ENGINEERING Volume 38, No. 5, 2014 PP 463–476 465

Table 1. Description of the full dynamic simulation code CAsT [5]

Name Description

Eigenvalue analysis Subspace iteration procedure
Dynamic Analysis Direct Implicit Integration (Newmark-β)
Formulation Total Lagrangian formulation
Convergence Newton-Raphson Method
Damping Estimation Rayleigh damping model
Element Type Beam (12-DOF), Truss (8-DOF)
Aerodynamic force Quasi-steady aerodynamic theory
Hydrodynamic Force Morison Equation + Srinivasan Model
Restoring Force Non-Hydrostatic Model
Mooring Force Nonlinear
Seabed contact Penalty Method

Table 2. Floating wind turbine description [5, 7]

Name Detail Description

Span (m) 60.0
Semi-submersible floater Submerged Depth (m) 20.0

Overall Height (m) 30.0

Rotor radius R (m) 63.0
Hub height Hh (m) 90.0

5MW wind turbine 1st frequency nt (Hz) 0.262
Rotor (including nacelle) mass mr (kg) 350000

Tower mass mt (kg) 347460

Wind turbine+floater 1st modal mass m1 (kg) 4524796

Figure 1. Catenary mooring system analyzed in this study



Taking the superstructure (wind turbine and floater) as rigid body, the sway frequency ωS and
rocking frequency ωR can be obtained by free vibration simulation using full dynamic simulation.
Thus, the stiffness of the two springs can be calculated as follows [8]:

(3a, 3b)

where hi is the height from the tower base.
From the displacement time series of free vibration simulation, the sway damping ratio ξS and

rocking damping ratio ξR can be recognized as well. Thus, the damping of the two dampers can be
calculated as follows:

(4a, 4b)

The comparison of the first natural periods between SR model and full model with catenary are
tabulated in Table 4. The comparison of the first mode shape along tower is shown in Figure 3, and 
1 is assumed for rotor. It is noticed that SR model is able to give very close natural periods and mode
shape to the full model.
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Figure 2. Sway-rocking model

Table 3. Lumped mass of wind turbine

Height from tower base hi (m) Lumped mass mi (kg)

0 4134403.52
8.76 45861.86
17.52 42825.06
26.28 39891.40
35.04 37060.89
43.80 34333.51
52.56 31709.23
61.32 29188.10
70.08 26770.12
78.84 24455.25
87.60 361661.80



4. EVALUATION OF WIND-INDUCED LOAD AND WAVE-INDUCED LOAD
The wind-induced load and wave-induced load can be investigated independently in the preliminary
design due to their weak coupling in the extreme condition, and then their combination can be
performed to get the final design value. In this section, the analytical formulae of these two kinds
of loads are proposed respectively based on SR model and quasi-steady analysis.

4.1. Wind-induced load
The analytical formulae of wind-induced load derived based on the SR model and quasi-steady
analysis have been proposed by Xu [4], which are in the same format as those of fixed-foundation
wind turbine [9]. This paper just gives a brief summary of the comparison between fixed-foundation
wind turbine and floating wind turbine, and refers to Xu [4, 9] for details. From analytical formulae,
it is easily found that the mean wind load and background standard deviation are the same since
they only depend on the wind itself; however, the resonant standard deviation is different since it is
determined by structural vibration characteristics. It is noticed that the first natural frequency and
damping ratio of the system are dominant influence factors, and floating wind turbine has much
different values from the fixed-foundation wind turbine in these two factors. The non-Gaussian
peak factor is found to be not sensitive to the type of foundation. The SR model is considered as the
consistent calculation model of wind load, which can consider any type of wind turbine foundation
by changing the stiffness and damping, and it becomes the fixed-foundation model when the
stiffness is infinite.

4.2. Wave-induced load
In the real situation, the irregular wave which is represented by the significant wave height Hs and
the spectral peak period Tp should be used. In this study the extreme 3-hour sea state with a 
50-year recurrence period is considered. In the short term, i.e. over a 3-hour or 6-hour period,
stationary wave conditions with constant Hs and constant Tp are assumed to prevail [10]. Thus,
significant wave height 10.75 m and peak wave period varying from 10~20 sec at an interval of 1s
are used in this paper. The time history of wave elevation is generated using model developed by
Chaplin [11] for JONSWAP spectrum. The peak factor of wave is determined as 3.3; the shape
factor is 0.07 for ω ≤ 2π/Tp and 0.09 for ω > 2π/Tp according to Chakrabarti [12]. Here, ω is the
angular frequency of wave.

The full dynamic simulation indicates that the wave-induced mean load on the tower is close 
to 0 [5], therefore, the wave-induced maximum load becomes the product of standard deviation and
peak factor in eqn (1). Modal analysis is used to determine the standard deviation, in which the
effects of floater surge and pitch motions are investigated separately by locking the other motion in
the SR model, and then their combination is performed to get the total standard deviation. 
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Table 4. Comparison of the first natural periods

Motion Full model/SR model

Surge 26.8s/26.2s
Pitch 14.3s/15.0s
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Figure 3. Comparison of the first mode shape with full model



A Gaussian peak factor is proposed since the tower loading due to the wave-induced background
motion which is Gaussian process is much more dominant compared to those due to the peak
acceleration of floater motions and resonance of tower.

4.2.1. Standard deviation
By locking the pitch motion as shown in Figure 4 (a), the modal equation of motion of j th mode in
surge direction is [8]:

(5)

where is the generalized mass, is the generalized damping

and ωj
s is the modal natural frequency in radians per second, fj

s is the modal displacement,
fj

s (k = 1, . . . , n) is the normalized mode shape of the jth mode, and Fwave (t) is the equivalent wave
force in surge direction.

If the wave varies harmonically, the modal displacement can be shown as [8]:

(6)

where .

is the ratio between external wave frequency ω and structural natural frequency, and is

the damping ratio, which is taken as the summation of structural damping ratio and hydrodynamic
damping ratio.

In modal analysis the excitations of the various different natural modes of vibration are
computed separately and the results superposed. In surge direction, substituting (6) the acceleration
at node k can be calculated as:

(7)
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If only the first mode is considered, the shear force at node i is derived as:

(8)

where aS(t) is the known surge acceleration at tower base, which can be provided by the ocean 

engineer in the real project, and in this study it is obtained from full dynamic simulation. 

and is defined as the elastic/solid ratio of mode shape at node k.

From eqn (8) it is found that the shear force consists of a solid part and an elastic part. The elastic

part is the function of . The mode shape changes with the stiffness kS of surge spring, as
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shown in Figure 5. Take the elastic/solid ratio of mode shape at tower top as indicator.φ φΔ /n
S S
1 11

increases when the stiffness kS increases, which means that the shear force increases whenφ φΔ /n
S S
1 11

the stiffness kS increases if the surge acceleration aS (t) keeps constant.

From eqn (8) the standard deviations of shear force and bending moment and due toσ i
MSσ i

QS

surge motion can be calculated from the standard deviation of surge acceleration :σ aS

(9)

(10)

For pitch direction shown in Figure 4 (b), the linear acceleration at node k can be calculated as:

(11)

where is the angular acceleration at node r, which can be obtained from modal analysis as well,

referring to the Appendix for the details of the derivation. Like surge direction, if only the first mode
is considered the shear force at node i can also be obtained from the known pitch acceleration at
tower base aP (t):

(12)

where . is defined as the elastic/solid ratio of mode shape at node r.
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Then the standard deviations of shear force and bending moment and due to pitchσ i
MPσ i

QP

motion can be calculated from the standard deviation of pitch acceleration :

(13)

(14)

The first term in the right hand side of eqn (14) considers the Ρ–Δ effect caused by the pitch
angle, where σθP is the standard deviation of pitch angle of tower base in radian.

Both surge and pitch motions have significant effect on the tower loading of catenary system.
Hence, the influence of the two motions should be combined together. From the full dynamic
simulation, it is recognized that the maximum responses of surge and pitch don’t occur
concurrently, but a certain correlation exists between them. Referring to the seismic loads specified
in AIJ [13], complete quadratic combination (CQC) is used here for the combination, as surge and
pitch modes have closer eigenvalues. Therefore, the total standard deviations of shear force and
bending moment are calculated as:

(15)

(16)

where ρSP is the correlation factor between surge and pitch modes.

(17)

where ξS, ξP are the damping ratios of surge and pitch, respectively. rSP = ωS/ωP is the ratio between
the natural frequency of surge and pitch modes. Therefore, the correlation between surge and pitch
modes doesn’t change with the external excitation, i.e., wave force, and it only depends on the
damping and natural frequency of the system. Here, ξS = 0.20, ξP = 0.21, ωS = 0.26, ωP = 0.37 have
been obtained from the free vibration simulation. Thus, ρSP = 0.79 is calculated.

Figure 6 shows that the proposed formulae agree well with the full dynamic simulation for the
standard deviation of wave-induced load on tower. It is found that the standard deviations of shear
force and bending moment decrease with the peak period of wave.

4.2.2. Peak factor
It is noted here that the peak factor is proposed considering the response of the whole wind turbine,
so it doesn’t change with height. The bending moment-based peak factor in this study can be used
for the calculation of shear force on the wind turbine tower. Figure 7 shows the comparison of
power spectrum density of tower base bending moment for the wave peak periods: 10 s, 15 s and
20 s. It is noted that the dynamic tower loading consists of three parts. Taking the 10 s case as
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example, the range around the first peak is caused by wave-induced background motion of floater,
which has the same peak frequency as wave np = 0.1; The range around the second peak is due to
the peak acceleration of the floater surge and pitch motions with the peak frequency ns = 0.192; The
range around the third peak is the resonant part due to the tower vibration with the peak frequency
nt = 0.262, corresponding to the first natural period of tower 3.8s. The second and third peaks are
negligibly small compared to the first peak, since they are only slightly excited by wave. In 15s case
and 20s case, the second and third peaks will not exist, leaving the first peak only, since the
frequency difference from the wave becomes larger and external excitation becomes weaker. That
is the reason why the skewness α3 of tower base bending moment obtained from the full dynamic
simulation (Figure 8) is close to zero, which follows the skewness of wave. As a result a Gaussian
process can be assumed for the tower base bending moment of floating wind turbine, and the
Gaussian peak factor of eqn (18) can be used.

(18)

where ν0 is the zero up-crossing frequency of tower base bending moment for Gaussian process:

(19)

where n is the frequency in Hertz, and S(n) is the power spectrum density. Since the three parts of
the spectrum in Figure 7 are all narrow band, the integration in eqn (19) can also be written into
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Figure 8. Skewness of tower base bending moment

approximately. It is indicated in Figure 9 that the Gaussian peak factor agrees well with full dynamic
simulation and it doesn’t change much with wave period.
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5. COMBINATION OF WIND-INDUCED LOAD AND WAVE-INDUCED LOAD
This section presents the combination of wind-induced load and wave-induced load. The reason why the
assumption of perfect correlation between them causes overestimation has been clarified. It is shown that
the combination without considering any correlation can predict the tower loading accurately.

5.1. Correlated wind and wave conditions
For DLC 6.1a, the turbulent extreme wind model shall be taken together with the extreme sea state
conditions [10]. The full dynamic simulation carries on six 1-hour realizations for each combination of
extreme wind speed and extreme sea state. In this case, the hub height mean wind speed, turbulence
standard deviation and significant wave height shall be taken as 50-year recurrence values each
referenced to a 1-hour simulation period. The hub height mean wind speed of 10 min value is considered
as 40~50 m/s. Further, for representation of turbulent wind speeds, the turbulent extreme wind model
makes use of characteristic turbulence intensity 0.11, which is 10 min value at hub height [14, 15].

In this study, the SMB method [16–18] is used to consider the correlation between the mean wind
speed U10 at 10 m height from the sea level and the significant wave height Hs and wave peak period TP:

(20)

(21)

where F = 235000 m. Figure 10 shows the variation of significant wave height HS and wave peak
period Tp with the mean wind speed at hub height.

5.2. Combination of wind and wave loads
In order to understand the respective contributions of wind and wave, the full dynamic
simulations using the wind and wave conditions discussed above are carried out in three sets
considering ‘wind only’, ‘wave only’ and ‘wind+wave’. The wind is set to act in the same
direction as wave, as shown in Figure 1, which will cause the most unfavourable load on tower.
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The mean svalue and standard deviation of tower base bending moment are compared for the
three sets of environmental conditions, as shown in Figure 11. It is indicated that the mean
bending moment depends on the wind, and the wave doesn’t cause any mean loading. It is found
from the comparison of standard deviation that wave contributes more than wind to the dynamic
loading. That is why the wave-induced load has to be taken into account for floating wind
turbine system. Therefore, the combined tower loading can also be calculated by quasi-steady
analysis using wind-induced mean loading, combined standard deviation and combined peak
factor.

In the ‘wind+wave’ case, the general equation of motion can be expressed as:

(22)

where Fwave is the wave force, Cd is the drag aerodynamic coefficient, ρ is the air density, A is the
wind acting area, x = s + x′ is the total displacement, s is the displacement due to wave and x′ is
the displacement due to wind, U is the mean wind speed, u is the fluctuating wind speed. In the
right hand side of eqn (22), the second term is the wind force which is totally the same as that of
‘wind only’ case, defined as Fwind; the third term is the coupling aerodynamic force which causes
the correlation between wind-induced load and wave-induced load. Since the wave-induced
vibration velocity s⋅ is negligibly small as well as x⋅ ′ compared to the mean wind speed in the
extreme condition, the second order terms of s⋅ 2, us⋅ and s⋅x⋅ ′ can be neglected in the third term.
Therefore, eqn (22) can be decomposed into two equations of motion under wind and wave,
respectively:

(23a, 23b)
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The aerodynamic force –CdρAUs in eqn (23b) will reduce the wave-induced response. This
reduction can be considered by aerodynamic damping. However, the aerodynamic damping ratio is
just 1/10~1/20 of the system damping ratio in the SR model for the floating wind turbine, hence can
be neglected. Thus, all the coupling aerodynamic forces in the third term of eqn (22) are ignored,
which means the correlation between wind-induced load and wave-induced load is neglected as a
matter of course. Therefore, the combined standard deviation σcb is calculated as:

(24)

where σwind and σwave are the standard deviations due to wind and wave that are calculated
independently in Section 4. It is shown in Figure 12 that the combination without considering any
correlation between wind-induced load and wave-induced load can predict the standard deviation
of ‘wind+wave’ case accurately.

The combined peak factor is able to be calculated using eqn (18) of Gaussian peak factor model
since the skewness of tower base bending moment of ‘wind+wave’ case is found to be close to 0
from the full dynamic simulation. In the calculation of zero up-crossing frequency, the wind part is
added to the power spectrum:

(25)

where , , .

is the variance of fluctuating wind load; σwind b and σwind r are the background part and resonant part
of wind load standard deviation, respectively; n1 is the first natural frequency of the floating system;
Uh is the mean wind velocity at hub height; Lu is the turbulence integral length scale; Awt is the wind
acting area of the whole wind turbine. Figure 13 shows the comparison of proposed formula with
full dynamic simulation. It can be seen that the Gaussian model can predict the peak factor of
‘wind+wave’ case well.
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Figure 12. Comparison of combined standard deviation with full dynamic simulation

Figure 13. Comparison of combined peak factor with full dynamic simulation



6. CONCLUSIONS
An equivalent SR model is proposed to calculate the tower loading of a floating wind turbine system
in the presence of wind and waves. The analytical formulae for the estimation of wind-induced load
and wave-induced load are proposed by quasi-steady analysis as well as the formulae for the loads
combination. The following conclusions are obtained:

1.  The stiffness and damping of surge and pitch modes in the SR model are identified by
free vibration simulation.

2.  The analytical formulae of wind-induced load are in the same format as those of fixed-
foundation wind turbine. The mean value and background standard deviation are the
same since they only depend on wind itself; the resonant standard deviation is different
because it is the function of the first natural frequency and damping ratio of the system
which are much different from the fixed-foundation wind turbine; the non-Gaussian peak
factor is found to be not sensitive to the type of foundation.

3.  The evaluation formulae of standard deviation of tower loading due to wave-induced
floater surge and pitch motions are proposed separately by locking the other motion
with modal analysis. Their combination is calculated with CQC rule, and the
correlation only depends on the damping and natural frequency of the system. A
Gaussian peak factor can be used, since the resonance of floater and tower is only
slightly excited by wave.

4.  For the total tower loading under wind and wave, the mean value depends on the wind
only; the standard deviation can be combined without considering any correlation
between wind-induced load and wave-induced load; the Gaussian peak factor is also
applicable to the total tower loading.
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APPENDIX
This appendix describes the details of the derivation of tower response due to pitch motion in the
SR model. Modal analysis is employed here to get the analytical solution.

By locking the surge motion as shown in Figure 4 (b), the modal equation of motion in pitch
direction is:

(A.1)

where ,

is the generalized mass, is the generalized damping and is the modal natural frequency
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in radians per second, is the modal displacement, is the normalized mode shapef j
P φ ( )=k n1, ,kj

P

of the j th mode, and Mwave(t) is the equivalent wave moment in pitch direction.

If the wave varies harmonically, the modal displacement (t) can be shown as [8]:

(A.2)

where      

In modal analysis the results of different natural modes are superposed to calculate the real
response. Substituting (A.2), the angular acceleration at node r can be calculated as:
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