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It is well known that a bluff body cross-section exhibits various kinds of aerodynamic

instabilities such as vortex-induced vibration, galloping and torsional flutter. Since

these cross-sections are used in long-span bridges and tall buildings, it is important to

predict their occurrence in wind resistant structural design. In this paper, the authors

make a series of comparisons of unsteady wind forces, unsteady pressure distributions

and free vibration responses between previously conducted studies and an unsteady

two-dimensional k–e model for rectangular cross-sections with cross-sectional ratios of

2 and 4 in a smooth uniform flow in order to verify computational predictability of

aerodynamic instabilities. As a result, the computation successfully predicted the onset

velocities and responses of these aerodynamic instabilities for these cross-sectional

ratios, which are common to tall buildings and long bridges.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

In cross-sections of structures such as bridges and buildings, which are bluff against wind flow, the shear layer
separated from the leading edge and its interaction with their after-body play important roles in the occurrence of
aerodynamic instabilities. Fig. 1 shows relationships between cross-sectional ratio B/D, where B is the along-wind length
and D is the cross-section depth, and aerodynamic instabilities (Takeuchi and Matsumoto, 1992). Based on flow patterns
formed around stationary cross-sections, instabilities are classified into three types: ’’separated’’, ‘‘periodically reattach-
ing’’ and ‘‘permanently reattaching’’. From Fig. 1, it is recognized that Karman-vortex-type vortex-induced vibration is
inherent to all ratios of cross-sections, galloping is related to separated-type cross-sections, motion-induced-vortex
vibration and torsional flutter are related to periodically reattaching cross-sections, and coupled flutter is inherent to
permanently reattaching cross-sections.

In separated-type cross-sections, shear layers that are alternately separated from both leading edges interact in the
wake and form a Karman vortex, which is a source of two-shear-layer-type instabilities, i.e. Karman-vortex-type vortex-
induced vibration and galloping.

In the periodically-reattaching-type cross-sections, the separated shear layer reattaches to the side surfaces of the
cross-section. This enhances the formation of strong roll-up of a separated shear layer near the leading edges by
impinging-shear-layer instability, which is a seed of one-shear-layer-type instability, i.e. motion-induced-vortex vibration.
ll rights reserved.
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Nomenclature

B along-wind length of a body
CpI

out-of-phase component of unsteady wind
pressure coefficient

CpR
in-phase component of unsteady wind
pressure coefficient

CLI
out-of-phase component of unsteady
lift coefficient

CLR
in-phase component of unsteady
lift coefficient

CMI
out-of-phase component of unsteady pitching
moment coefficient

CMR
in-phase component of unsteady pitching
moment coefficient

D cross-section depth
f0 natural frequency
fm excitation frequency

h damping decrement
Z(t) excitation amplitude
H span length of a body
I mass moment of inertia
m mass
Sc Scruton number or mass-damping ratio

¼2m/(rBDH)2ph for transverse motion and
¼2I/(rB2D2H)2ph for torsional motion

U0 inflow velocity
Ur reduced velocity¼U0/(f0B)
Wr normalized work
x along-wind coordinate
y transverse displacement
b phase of unsteady force
bp phase of unsteady wind pressure
y torsional displacement
r density of air
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In stationary-reattachment-type cross-sections, the separated shear layer also reattaches to the side of the cross-
section and forms a separated bubble. In the vibrating regime, the distance between the vibration center and the peak of
the pressure fluctuation inside the separation bubble determines the difference in flutter derivatives [see, e.g., Matsumoto
et al. (1997)].

Thus, the flow regimes around the stationary cross-section are closely related to the aerodynamic instabilities through
the reattachment of the separated shear layer and the shear-layer instability.

Among these instabilities, for galloping and Karman-vortex-type transverse vortex-induced vibration, response can be
predicted by means of a mathematical model such as quasi-steady theory (Parkinson and Wawzonek, 1981) and a
nonlinear wake-oscillator model (Tamura and Shimada, 1987). With these models, once empirical parameters are
identified from experiment, not only the onset velocity but also their response amplitudes can be predicted. For torsional
motion, unlike transverse motion, although onset velocity can be predicted by Shiraishi and Matsumoto (1982) and Kubo
et al. (1992), a mathematical model has not been developed yet [see, e.g., Paı̈doussis et al. (2011)]. On the other hand,
computational fluid dynamics has recently been applied to the simulation of flow past a bluff body and aerodynamic force
[see, e.g., Nomura (1994)]. However, so far there have been relatively few studies on application to the prediction of
response [see, e.g., Kato (1997) and Tamura and Itoh (1998)] compared with those on unsteady wind forces [see, e.g.,
Kuroda (2000), Larsen and Walther (1998), Sarwar et al. (2008), and Shirai and Ueda (2003)].

In the evaluation of aeroelastic vibration it is necessary to conduct a calculation that consists of some hundred to a
thousand of reduced time. Furthermore, since various reduced velocities should be examined with respect to changing
mechanical properties such as mass-damping ratio, a parametric study by means of 3-D simulation requires enormous
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Fig. 1. Flow pattern of stationary cross-sections and aerodynamic instabilities (Takeuchi and Matsumoto, 1992).
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computational time. However, by means of two-dimensional analysis, the authors have examined a k–e model for prediction
of aerodynamic characteristics of stationary rectangular cross-section (Shimada and Ishihara, 2001). In the high Reynolds
number region, although three-dimensionality of the flow can not be neglected, the good performance of 2-D analysis is due
to the turbulence viscosity produced by the implemented turbulence model or numerical dissipation, which act as a mimic
spanwise momentum diffusion. This feature is extraordinarily advantageous for solving problems of aeroelastic vibration,
which require a lot of computational time. However, two-dimensional analysis is essentially an approximation and thus it is
necessary to examine the physical consistency of the obtained results. This paper examines the k–e model for various types
of aerodynamic instability by comparison with experiments. It then discusses the applicability of an unsteady two-
dimensional k–e model to the prediction of these instabilities based on the experimental results.

This paper consists of six sections. Section 2 describes the numerical methodology of fluid analysis incorporating
aeroelastic motion and identification of unsteady wind forces. Section 3 explains in detail the experimental methodology
of free vibration tests conducted to verify the numerical simulation. Section 4 compares analysis and experiments for
transverse vibrations for B/D¼2 and B/D¼4 cross-sections, and discusses motion-induced-vortex vibration and transi-
tional vibration to galloping. Section 5 compares torsional vibrations, and discusses motion-induced-vortex vibration in
torsional mode and torsional flutter. Finally, Section 6 gives conclusions obtained from this study.

2. Numerical method

2.1. Fluid analysis

Numerical analysis is based on the two-dimensional unsteady k–e model
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Here, subscripts on variables i and j (i, j¼1, 2) follow Einstein’s convention. In Eq. (1), the left hand side expresses a
substantial derivative. If the body vibrates at a velocity _xj, substantial derivative of quantity f can be expressed as
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, ð2Þ

nt is the eddy viscosity coefficient and is given as nt¼Cmk/e. The turbulent kinetic energy k and its dissipation rate e are
obtained by the following their transport equations:
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All of the empirical parameters in this equation, i.e. Cm, Ce1
, Ce2

, sk and se are identical to those used in the conventional
standard k�e model. Pk is the production of turbulent kinetic energy. In the present analysis a model proposed by Kato and
Launder (1993), in which the production term is modified based on the assumption of flow irrotationality, is employed in
order to prevent excessive production of turbulent kinetic energy near the leading edge:

Pk ¼ Cm
k2
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Since turbulence viscosity of flow in the vicinity of the wall boundary is smaller than in other areas, the above turbulence
model is not applicable to this region. Therefore, there are alternatives such as imposition of a logarithmic law profile or a
low Reynolds number model. The present method employs a two-layer model (Norris and Reynolds (1975) and Rodi
(1991)) in the vicinity of the boundary:

e¼ k3=2

le
, ð6aÞ

nt ¼ Cmk3=2lm, ð6bÞ

here, length scales le and lm are expressed as

le ¼
Clyw

1þ5:3=Rey
, ð7aÞ

lm ¼ Clyw 1�exp �
Rey

Am

25

Aþ

� �� �
, ð7bÞ

where constants in the above expressions, Cl¼0.41Cm
�3/4

, Am¼50.5 and Aþ¼25. yw expresses the distance from the wall. In
the two-layer model, since le and lm are the functions of turbulent Reynolds number Rey(¼k1/2yw/n), Reynolds number
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effect of the flow can be taken into account. Although this methodology requires more grid points near the wall than the
logarithmic law, it can resolve the flow well when the flow reattaches to the wall. Furthermore, since e is imposed
algebraically by Eq. (6a) near the wall boundary, complicated treatment near the wall such as a low Reynolds number
model can be avoided. In the present calculation, the two-layer model is applied only to the region within three meshes
from the solid boundary.

The pressure P¼p/r is obtained by solving the Poisson equation, given as
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In order to simulate the flow fields around a bluff body, the separated shear layer should be resolved accurately. For this
purpose, a body-fitted coordinate system is employed to concentrate grids near the bluff body (Fig. 2). The above set of
equations is transformed into analytical space from physical space by using a generalized coordinate system. A set of
transformed equations are discretized by the finite difference method. The Marker and Cell Method by Harlow and Welch
(1965) is employed for the time marching with a modification of the arrangement of variables. In the present analysis, a
regular grid is used, that is, all dependent variables are located on the same grid points. The convective terms in the
momentum transport equation are approximated by the third-order upwind difference scheme by Kawamura and
Kuwahara (1984), and the convective terms in the k and e transport equations are discretized by the first-order upwind
difference scheme to stabilize the numerical instability at high Reynolds number arising from the nonlinear effect of the
convective term. Numerical grids are generated by an O-type grid system and the number of grid points is 320�200¼64
000. In order to simulate the structure’s motion, the analytical domain is divided into an inner region and a perimeter region
(Fig. 3). The latter is fixed and the former moves with the structure. A buffer region is made between them, where the grids of
the inner and perimeter zones are connected. The Reynolds number is chosen to be Re¼U0D/n¼22 000, where U0 is the
inflow velocity and n is the kinematic viscosity, so as to be consistent with the order of the Reynolds number in the
experiments. Reduced wind speed Ur¼U0/(fB) is adjusted by sweeping the frequency.
Fig. 2. Grid in the vicinity of a cross-section.

Outer boundary (Fixed)

Interior zoneInflow

buffer zone

perimeter zone (Fixed)

Fig. 3. Schematic of analytical domain.
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2.2. Forced vibration

2.2.1. Unsteady wind force

In this section, numerical calculation of forced vibration for one-degree-of-freedom transverse and torsional motion is
explained. At first, the displacement motion of the forced vibration is assumed to be expressed as

ZðtÞ ¼ Z0 sinomt, ð9Þ

where Z(t) expresses forced motion, which is transverse motion in Section 4 and rotational angle in Section 5. Dominant
components of unsteady wind force are a vortex-shedding component and a forced frequency component. The latter has a
delay from forced motion and is expressed as

FmðtÞ ¼ F0sinðomtþbÞ, ð10Þ

where Fm expresses unsteady wind force, which is unsteady lift in Section 4 and unsteady pitching moment in Section 5.
om is circular frequency (¼2pfm) and F0 is the amplitude of unsteady wind force. F0 and b are expressed by Fourier
decomposition of the aerodynamic forces obtained by fluid analysis as

F0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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, b¼ tan�1FmI
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90
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Fig. 4. Experimental apparatus for free vibration test: (a) transverse mode and (b) torsional mode.

Table 1
Mechanical properties of experimental model in transverse mode.

Case B/D B�D�H (mm) f0 (Hz) m (kg) h (%) Sc

1 4 120�30�300 10.3 0.256 0.13 3.2

Table 2
Mechanical properties of experimental model in torsional mode.

Case B/D B�D�H (mm) f0 (Hz) m (kg) h (%) Sc

2 2 80�40�300 21.5 5.09�10�4 0.29–0.44 4.9–7.5

3 2 80�40�300 9.175 3.12�10�3 0.44–0.52 45.8–54.1

4 4 120�30�300 19.15 6.91�10�4 0.24–0.63 4.4–11.5



Table 3
Mechanical properties of a B/D¼2 cross-section in transverse mode.

DATA Sc Mass ratio 2m/(rBDH) Logarithmic damping

Miyazaki (1982) 3.0 750 0.0040

Takeda and Kato (1992) 1.6 302 0.0053

k�e model 2.0 500 0.0040
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where T¼N/fm(NZ1). Therefore, the unsteady forces can be decomposed as

FmðtÞ ¼ FmR
sinomtþFmI

cosomt, ð12aÞ

FmR
¼ F0 cosb, FmI

¼ F0 sinb, ð12bÞ

where the first term on the right hand side of Eq. (12a) FmR
is called the in-phase component and the second term FmI

is
called the out-of-phase component. FmI

plays an important role on the stability of the vibration. When the above
aerodynamic forces are applied to a body of a structure, the equation of motion becomes

m €Zþc _ZþkZ¼ FmðtÞ ¼ FmR

Z
Z0

þFmI

_Z
omZ0

: ð13Þ

Since the second term on the right hand side is in phase with damping force, it is called aerodynamic damping. When
FmI

40, i.e. F040 and b¼901, it acts to decrease the structural damping force, and is called aerodynamic negative damping.
Since the in-phase component is the same phase as the restoring force, it is called aerodynamic stiffness. These forces are
expressed as coefficients as

CLR
¼

LmR

ð1=2ÞrU2B
, CLI

¼
LmI

ð1=2ÞrU2B
, ð14aÞ
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CMR
¼

MmR

ð1=2ÞrU2B2
, CMI

¼
MmI

ð1=2ÞrU2B2
, ð14bÞ

where LmR
, LmI

and MmR
, MmI

are in-phase and out-of-phase components of unsteady lift and pitching moment of unit span
length. The unsteady wind forces are functions of frequency and amplitude of motion.

2.2.2. Unsteady pressure

The same definition can be established for the fluctuating pressure. The unsteady pressure coefficients can be defined as

CpR
¼

pmR

ð1=2ÞrU2
, CpI

¼
pmI

ð1=2ÞrU2
ð15aÞ

9Cpm 9¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

pR
þC2

pI

q
, bp ¼ tan�1CpI

=CpR
ð15bÞ

pmR
¼ p0 cosbp, pmI

¼ p0 sinbp, ð15cÞ

where CpR
and CpI

are the in-phase and out-of-phase components of the fluctuating pressure coefficients. They give spatial
information of excitation source. When a portion on the surface of a structure is CpI

40, i.e. 9Cpm 940 and bp¼901, it means
that the fluctuating pressure at the portion is an exciting source.
Fig. 9. Instantaneous vorticity field of a B/D¼2 cross-section in transverse free vibration at its maximum amplitude except for (a): (a) at rest, (b) Ur¼2.0,

(c) Ur¼2.75, (d) Ur¼4.0, (e) Ur¼7.5, and (f) Ur¼10.0.
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2.3. Free vibration

For free vibration, instead of assigning a motion of a body by Eq. (9) a priori, motion of a body is obtained by solving the
equation of motion. In both cases, the incidental velocity vector relative to a body is detected locally from free stream flow
velocities and motion velocities automatically.
3. Free vibration test methodology

One-degree-of-freedom transverse and torsional free vibration tests were conducted to verify the numerical results.
Fig. 4 shows the experimental apparatus. These motions were realized by a pair of springs comprising a plate spring for
transverse motion and a cross-spring for torsional motion. Damping was added by an electronic magnetic damper.
Transverse displacement was measured by an optical displacement sensor. Torsional displacement was obtained by
dividing the target displacement by the length between the target and the center of rotation. The experimental results
showed sinusoidal motion, but in this paper results are shown as their standard deviation multiplied by

ffiffiffi
2
p

. Experiments
were conducted using models made as light as possible. The experimental model was made of balsa. At both sides of the
model tips, end plates made of aluminum were attached. Tables 1 and 2 list the parameters of the experimental model.
Fig. 5 shows the variation of damping coefficient. A slight dependence on the amplitude of motion is observed (Table 3).
4. One-degree-of-freedom transverse motion

4.1. Unsteady lift of B/D¼2 cross-section

The B/D¼2 cross-section is attractive from the engineering as well as from the numerical analysis point of view since it
exhibits both galloping and motion-induced-vortex vibration, which are typical of separated- and reattaching-type cross-
sections. Fig. 6 shows numerical results of unsteady lift force coefficient CLI

obtained as a result of forced vibration in the
transverse mode with an amplitude of y0/D¼0.1. CLI

becomes positive in the region near Ur¼2.5 and Ur47.5, where
motion-induced-vortex vibration and galloping occur, respectively. Computational results also corresponded with the
experimental results by Washizu et al. (1978).
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It is worth mentioning that when we use an ordinary 2-D analysis that simply neglects the spanwise velocity
component without incorporating a turbulence model, the lower range of reduced velocity is well reproduced but the
higher region can not be simulated (Shimada, 1995).

Fig. 7 shows unsteady pressure distributions on the surface of the cross-section for Ur¼2.75, 6.75 and 12.0. At Ur¼2.75,

bp is out of phase on the leeward side (x/D40), which means that CpI
is positive, so an exciting force acts on the leeward

side. At Ur¼6.75, where 9Cpm 940 and bpo0, i.e. CpI
o0 on the whole region of the surface, the damping force acts on the

cross-section when y0/D¼0.1. At Ur¼12, where 9Cpm 9ffi09 and bp40, CpI
recovers slightly from Ur¼6.75 and transition to

galloping begins appearing. The figure also shows experimental results by Miyata et al. (1983) and three-dimensional
numerical analysis by Tamura and Itoh (1997), and the present results agree well with those results.
4.2. Simulation of transversely elastically supported B/D¼2 cross-section

Scruton number (Sc¼2m/(rBDH)2ph, where H: spanwise length, m: mass, h: damping ratio, r: air density) is a
dominant parameter in vortex-induced vibration. According to the quasi-steady theory by Parkinson and Wawzonek
(1981), galloping depends on the mass ratio and damping decrement independently. Therefore, in order to perform an
analysis in a reduced velocity range from vortex-induced vibration to galloping transition, information is required on both
mass and damping.

Fig. 8 shows transverse elastically supported response. Fig. 9 shows the instantaneous vorticity field at the instant of
maximum amplitude for some typical reduced velocities. Also, Fig. 10 shows drag, lift and displacement time series during
the motion.

Fig. 10(a) shows drag, lift and response for Ur¼2 where the cross-section is first at rest. At first, lift fluctuates with
Strouhal number frequency. However, at tU0/D¼275, a forced vibration frequency component appears. At tU0/D¼450, the
former component is replaced by the latter component. Vortex shedding is synchronized with the motion, and the flow
pattern shown in Fig. 9(b) is completely different from the flow at rest in Fig. 9(a).

At Ur¼2.75, motion-induced-vortex vibration is at its maximum amplitude. Mean drag and base pressure are larger than
those for a stationary cylinder. This is because a strong secondary vortex is formed at the trailing edges of the cross-section.
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This vortex is merged with the rolled up vortex traveling downstream along the side surfaces from the leading edge, and is
shed into the wake. This flow pattern corresponds closely with that reported by Shiraishi and Matsumoto (1982).

At Ur¼4.0, vortex shedding is out of synchronization, so the amplitude is abruptly reduced. From near Ur¼5.0 the response
resumes increasing. Since this reduced velocity almost coincides with the resonant velocity, which is defined as the reciprocal
of the Strouhal number St¼0.085, Karman-vortex-type vortex-induced vibration seems to be latently involved with it.

At Ur¼7.5, the oscillation is found to be modulated as shown in Fig. 10(c). This modulation is also observed in the
experiments by Takeda and Kato (1992) in Fig. 8, as indicated by the error bar. In this range of reduced velocities, since
vortex shedding is involved, the phenomenon is complicated [see, e.g., Itoh and Tamura (2002)]. However, if the mass ratio
and damping decrement are relatively small, the response transits to galloping. At Ur¼10.0, as can be found in Fig. 9(f), it
can be recognized that flapping of the separated shear layer plays an important role in the formation of aerodynamic force.
Fig. 13. Instantaneous vorticity field of a B/D¼4 cross-section in transverse forced vibration with y0/D¼0.02 at its maximum lift.
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4.3. Unsteady wind forces of B/D¼4 cross-section

Cross-sections within the range of B/D¼3–6 are classified into periodically reattaching-type cross-sections. These types
of cross-sections exhibit multiple excitation peaks. In this section, numerical simulation is applied to this cross-section and
its applicability is verified.

Fig. 11 compares unsteady wind force with the experimental results by Mizota and Nakamura (1974) and Washizu
et al. (1978). In Fig. 11(a), CLI

becomes positive near Ur¼1 and Ur¼1.75. Although the magnitude of the peak calculated by
the simulation is slightly larger than the experimental value, including phase difference, the global characteristics are
found to be in good agreement.
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Fig. 12 shows unsteady pressure distributions. At Ur¼1 and Ur¼2, CpI
becomes positive on a couple of regions on the

surface. However, since they are canceled by the negative portions, the total excitation force is smaller than for Ur¼2. For
Ur¼7.5, CpI

is negative over the whole of the surface. At Ur¼1, the vorticity contour in Fig. 13 shows that there are always
two apparent vortices on either side of the surface. For Ur¼2, there is only one portion where CpI

becomes positive and
primal excitation force is generated there. In this case, Fig. 13 shows one large vortex on the surface.
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Fig. 17. Instantaneous vorticity field of a B/D¼2 cross-section in torsional forced vibration with y0¼3.821.
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4.4. Simulation of transversely elastically supported B/D¼4 cross-section

Fig. 14 compares the numerical and experimental results of transverse free vibration of a B/D¼4 cross-section by
Washizu et al. (1978) and Miyata et al. (1983). In the V-A diagram, excitations are recognized at Ur¼1 and Ur¼1.75. Since
these onset velocities can be predicted by the formula by Shiraishi and Matsumoto (1982) as Ur¼0.83 and Ur¼1.67, these
excitations can be regarded as motion-induced-vortex vibration. Excitations are recognized within regions where CLI

shows positive values in Fig. 11(a). For Ur42.75, since CLI
shows negative values, no excitations are recognized.

Scruton number (Sc) consists of the mass ratio m¼2m/(rBDH) and the damping decrement h. In order to see the effect
of these parameters, in Fig. 14 the values are varied as the products are equal to Sc¼3.2. Regardless of the value of the
mass ratio and the damping decrement, the peak responses are almost the same. This result agrees with the findings by
Tamura and Matsui (1979) where this is analytically shown by means of the wake-oscillator model in which the Karman-
vortex-type vortex-induced vibration gives the same peak response if the Scruton number is the same.

5. One-degree-of-freedom torsional motion

5.1. Unsteady pitching moment of B/D¼2 cross-section

In the unsteady pitching moment in Fig. 15, positive CMI
is recognized in two regions, i.e. Ur¼3 and 7.5oUro9.

Although in the experiment by Matsumoto et al. (1997) the amplitude is 21, the numerical result is found to give better
agreement when the amplitude is set to 31.

Fig. 16 shows distributions of normalized work per unit area Wr on a surface.

Wr ¼�
px

D
siny09Cpm 9sinbp: ð16Þ

In Fig. 16(a) at Ur¼3, Wr is positive, and is especially large when x/D40, which is the excitation source. The numerical
results agree well with both the wind tunnel experiment by Miyata et al. (1983) and the three-dimensional numerical
simulation by Seto et al. (1997).
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Fig. 16(b) exhibits Wr for Ur¼5 and 11. From Fig. 15(a), at each Ur, pitching excitation is almost zero. From Wr at Ur¼5,
the windward portion on the side surface becomes damping force and the leeward portion contributes as an excitation
force, but, at Ur¼11 the opposite applies. Since the sums of the integrated amounts on each side are almost the same, they
cancel each other out, so the total excitation moments are small. The numerical results simulated these changes well with
respect to the reduced windspeed.

Fig. 17 shows instantaneous vorticity fields for Ur¼3.25 and Ur¼11.25. At Ur¼3.25, where excitation moment is arising,
a vortex is formed behind the cross-section. At Ur¼11.25, where excitation moment is small, the vortex formation is weak
and is apart from the cross-section.
5.2. Simulation of rotationally elastically supported B/D¼2 cross-section

Fig. 18 compares the free vibrations of the author’s experiment with the numerical results. Both the relatively small
Scruton number case and the large case are illustrated in Fig. 18(a) and (b), respectively, where Scruton number is defined
as Sc¼2I/(rB2D2H)2ph, where H: spanwise length, I: mass moment of inertia, h: damping decrement and r: air density.
Although, as can be seen in Fig. 5, damping decrement has amplitude dependency, in the analysis, Scruton number is set to
Sc¼5.5 (h¼0.325%) and Sc¼50 (h¼0.44%). The experiment shows the onset velocity of vortex-induced vibration at
Ur¼2.75 and torsional-flutter at Ur¼5.25. The numerical results successfully simulated both the onset velocities and the
peak amplitudes of these excitations.

Scruton number in Fig. 18(b) is larger where Sc¼50 and h¼0.44%. From the experiment, two peaks are recognized in
response, whose onset velocities are Ur¼6 and 9.5. In the figure, response tracks are indicated by digit ordering. Response
amplitude increases with Ur from point 1 to point 4. However, after point 4, there is no increase in amplitude in spite of
increasing Ur. Tracks from point 6 to point 7 are obtained by initially imposing a certain amplitude 5. In the analysis, the
response amplitude at this point was obtained in the same manner by assigning an initial amplitude of y0¼3.821. After this
point, the response increases up to point 7 and then suddenly drops.
Fig. 19. Instantaneous vorticity field of a B/D¼2 cross-section in torsional free vibration: (a) torsional vortex-induced-vibration (Ur¼3) and (b) torsional

flutter (Ur¼6.25).
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It is also suggested by Nakamura and Mizota (1975) and Washizu et al. (1980) that in the high reduced velocity region
Ur47 there is a region where excitation moment is small if the amplitude is small. Thus, the response does not develop by
itself unless a certain amount of initial amplitude is imposed. The response looks like a velocity-restricted-type vibration
such as vortex-induced vibration, but its mechanism is not the same.

Fig. 19 shows instantaneous vorticity contours of half cycle at Ur¼3 and 6.25 where vortex-induced vibration and
torsional flutter occur. At the vortex-induced vibration, a separated shear layer rolls up into a vortex downstream of the
cross-section and is shed into the wake. However, at the torsional flutter, no apparent rollup of the shear layer is observed
near the cross-section. Instead, the vortex is shed into the wake away from the cross-section.
5.3. Unsteady pitching moment of B/D¼4 cross-section

This section presents torsional vibration of a B/D¼4 cross-section as a representative of a separated shear-flow-
reattaching-type cross-section. Fig. 20 shows unsteady pitching moment coefficients. The amplitude of the numerical
simulation is y0¼3.821 which is the same as in the experiment by Washizu et al. (1980). In the region Ur45, CMI

is
positive, which indicates that torsional flutter will occur. For CMI

, the numerical simulation agrees well with the
experiment over the whole reduced velocity region. However, for Uro3, CMR

does not agree with the experiment. Since
the period of the motion becomes short for lower Ur, the result of a fine time increment Dt¼1/2000, which is 1/5 that of
the usual cases, is also indicated for Ur¼1 in the figure. However CMR

is almost the same as that for usual Dt. Therefore, no
difference is found due to the time increment. Although no figure is shown, the same characteristic is found for B/D¼2 of
the present simulation and a two-dimensional simulation of a B/D¼5 cross-section by the third-order upwind difference
by Tamura and Kuwahara (1992). In the present simulation of low Ur region, extremely intensified roll-ups of the
separated shear layer are observed near the leading edges of the cross-section. This might be due to a lack of turbulence
diffusion inherent in the two-dimensional analysis. Further studies will be required to clarify the reason.

Fig. 21 shows an unsteady pressure distribution at Ur¼1.42 where torsional vortex-induced vibration occurs. The
numerical results agree well with the experiment by Shiraishi et al. (1985) and the three-dimensional numerical analysis
by Seto et al. (1997).
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5.4. Simulation of rotationally elastically supported B/D¼4 cross-section

Fig. 22 compares the torsional vibrations of a B/D¼4 cross-section of the present numerical simulation and the
experiment. Although the damping decrement shows an amplitude dependency as indicated in Fig. 5, in this simulation it
is kept as a constant h¼0.283%, i.e. Sc¼2Id/(rB2D2)¼5.3. Although the simulated results for 4oUro5 are slightly
different from the experimental results, numerical analysis successfully simulates the torsional vortex-induced vibration
at Ur¼1.25 and torsional flutter at Ur¼4.



Fig. 23. Instantaneous vorticity field of a B/D¼4 cross-section in torsional free vibration: (a) torsional vortex-induced-vibration (Ur¼3) and (b) torsional

flutter (Ur¼6.25).
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Fig. 23 shows instantaneous vorticity fields for torsional vortex-induced vibration and torsional flutter for a half cycle of
the motion. In the motion-induced-vortex vibration, a separated shear layer from a leading edge which rolls up into a
vortex is merged with the secondary vortex formed at the trailing edge and is shed into the wake. In the torsional flutter,
no apparent vortex is observed. A separation bubble is generated when the section rises up its head and gradually covers
the whole of the side surface.

6. Conclusion

This paper has studied the predictability of the unsteady two-dimensional k–e model for aerodynamic instabilities for
B/D¼2 and 4 cross-sections. As a result, one-degree-of-freedom transverse and torsional motions were successfully
simulated. Results are summarized as follows.
(1)
 Onset velocities and response amplitudes of vortex-induced vibration for B/D¼2 and B/D¼4 were well predicted with
respect to both transverse and torsional motions by this analysis.
(2)
 With respect to torsional flutter, its onset velocity was well predicted quantitatively for both B/D¼2 and B/D¼4.
Response amplitudes were globally simulated, but were partially inconsistent with the experiment.
(3)
 With respect to galloping, in this paper only up to a reduced velocity Ur¼12, which is transition from vortex-induced
vibration, was calculated. However, it was well predicted for relatively small mass damping ratio.
In computational fluid dynamics, various kinds of numerical schemes, turbulence models and near wall boundary
treatments have been proposed in order to solve high-Reynolds-number flow more accurately and stably. In this paper,
with a suitable choice and combination, without any modification of their parameters, various kinds of aerodynamic
instabilities caused by vortex were successfully simulated.
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Since further research is required on various kinds of complicated cross-sections of practical structures, as an
application of the model in the present stage, it is desirable to use it with experimental results to account for their
aerodynamic mechanism. Since two-dimensional calculation is fast, it enables the mechanical parameters to be changed
over a broad range. As a result, it is possible to grasp global characteristics of aerodynamic instability. Furthermore, since
motion, flow field, pressure and aerodynamic forces are obtained simultaneously, which is difficult in the experiments, it is
possible to gain a deeper insight into the mechanism. Therefore, this model may be effective, for example, as a tool for
optimization of aerodynamic motion mitigation.
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Appendix A. Normalized work by unsteady pressure

Work done by fluctuating pressure acting on a point on the upper surface of the cross-section for a cycle of oscillation is
expressed as

W ¼�

I
pUdy¼�

I
p _ydt: ðA:1Þ

Although p(t) has many frequency components, if the motion of a structure is sinusoidal with circular frequency om,
due to the orthogonality of the trigonometric function only the om component is extracted. Therefore,

W ¼�

I
pmðtÞ _ymdt, ðA:2Þ

where pm(t) is the om component in p(t) and ym is forced displacement which are defined as
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ym ¼ ðxsiny0Þsinomt, ðA:4Þ

in which y0 is amplitude of angular displacement. Therefore the work is obtained as
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Hence, normalized work done by fluctuating pressure acting on a point on the upper surface of the cross-section for a
cycle of oscillation is expressed as

Wr ¼
W

ð1=2ÞrU2
0 D
¼�p9Cpm 9sinbp

x

D
siny0

	 

: ðA:6Þ
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