洋上風力発電所建設のための海象・気象条件と施工稼働率の数値予測

Numerical study of wave and wind conditions and weather window for construction of offshore wind power plants

ムハマド ワトード サーワー*3 石原 孟*1 山口 敦*2 老川 淮*3

Takeshi ISHIHARA Atsushi YAMAGUCHI Muhammad Waheed SARWAR Susumu OIKAWA

*¹Professor, Department of Civil Engineering, The University of Tokyo, 7-3-1 Hongo Bunkyo Tokyo, 113-8656 Japan Fax:+81-3-5841-1147, E-mail: ishihara@bridge.t.u-tokyo.ac.jp
 *² Research Associate, Department of Civil Engineering, The University of Tokyo
 *³ Research Fellow, Department of Civil Engineering, The University of Tokyo

Abstract

In this study, numerical simulations for waves and winds are carried out using SWAN and RAMS and the predicted significant wave height, wave period and wind speed are compared with measurement. Annual average values of absolute monthly error of wave height, wave period and wind speed are 15.0%, 8.7% and 9.2%, respectively. Occurrence of significant wave heights smaller than 1.0m depends on season and shows higher value during summer. However, small seasonal variations in occurrence are observed for significant wave periods smaller than 8sec and wind speeds below 10m/s. Monthly bias correction is adopted to improve the accuracy of predicted occurrence of significant wave height and wind speed. For significant wave periods lower than 6sec, the weather window of construction remains very low throughout the year. A significant improvement in the weather window of autumn and winter is obtained by increasing maximum allowable wave period to 8sec and wave height from 1.0m to 1.3m. Monthly variations of the available construction periods are predicted well by the numerical simulations.

キーワード:洋上風力発電所、海象と気象条件、数値予測、施工稼働率 Key Words: offshore wind power plant, wave and wind condition, numerical simulation, weather window of construction

1. はじめに

洋上風力発電所を建設する際には、施工稼働率の算 定が重要である。海上工事では、波高、波周期、風速に 関してそれぞれ限界値を有し、またこれらの限界値は、施 工法や作業船の種類によって異なる。本研究では、波周 期と風速がそれぞれある一定値以下の時に限界波高の 値を下回る時間と全時間との比として施工稼働率を定義 する。海上作業の安全性や定時性の確保、及び作業船 種の選択による経済性の検討には、風車建設地点にお ける海象・気象条件を高精度に推定するとともに、想定さ れる工法の施工稼動率を的確に予測することが不可欠で ある。

海上における施工稼働率を推定する手法としては現地 観測に基づく手法がある。しかし、海上での現地観測が 難しい上、観測点周辺の海象・気象条件を把握できない という問題もある。一方、近年、第三世代波浪推算モデル SWAN¹⁾に代表される波浪シミュレーションやRAMS²⁾に 代表される気象シミュレーションが広く用いられてきた 3)4)。 しかし、これらの研究のほとんどは高波浪時を対象として

おり、施工稼働率の算定に必要な低波浪時の予測精度 について不明な点が残されている。

そこで、本研究では、波浪シミュレーションと気象シミュ レーションを実施し、観測データを用いてその予測精度を 検証する。また、季節ごとの波高、波周期、風速の階級別 出現時間を求めると共に、作業船の耐波性能により規定 される限界波高と波周期を変化させた場合の月別施工稼 動率についても検討する。

2. 波浪推算と気象予測

2.1 波浪推算

洋上風力発電所を建設する際に必要な波高及び波周 期の時系列データを得るために、本研究では、波浪方向 スペクトル成分波間の非線形相互作用を評価できる第三 世代波浪推算モデル SWAN を用いた。直交 2 次元空間 上における波浪スペクトルのエネルギー変化は以下のよ うに表される¹⁾⁵⁾。

$$\frac{\partial}{\partial t}N + \frac{\partial}{\partial x}(c_xN) + \frac{\partial}{\partial y}(c_yN) + \frac{\partial}{\partial \sigma}(c_{\sigma}N) + \frac{\partial}{\partial \theta}(c_{\theta}N) = \frac{S}{\sigma}$$
(1)

ここでNは作用密度であり、波数を乗じることにより波の エネルギー E が求まる。 $c_x, c_y, c_\sigma, c_\theta$ は、それぞれ空間

^{*1} 東京大学大学院工学系研究科教授(〒113-8656 東京都文京 区本郷 7-3-1) E-mail: ishihara@bridge.t.u-tokyo.ac.jp

^{*2} 東京大学大学院工学系研究科特任助教

^{*3} 東京大学大学院工学系研究科特任研究員 (原稿受付: 年 月 日)

(x, y)におけるx, y方向の進行速度及びスペクトル空間 (σ, θ) における $\sigma \ge \theta$ 方向の進行速度で、以下のように 表せる。

$$c_{x} = c_{g} \cos \theta, c_{y} = c_{g} \sin \theta, c_{\sigma} = \frac{\partial}{\partial t} \sqrt{gk \tanh(kh)},$$

$$c_{\theta} = \frac{c_{g}}{c} \left(\sin \theta \frac{\partial c}{\partial x} - \cos \theta \frac{\partial c}{\partial y} \right)$$
(2)

また、エネルギーソース項Sは、次式で表せる。

$$S = S_{in} + S_{ds} + S_{br} + S_{bf} + S_{nl} + S_{tri}$$
(3)

ここで、S_{in}は、風から波へのエネルギー輸送効果を表し、 SWANではS_{in}にPhillips(1957)の共鳴理論とMiles(1957) の相互作用理論が用いられている。また S_d は、白波砕 波によるエネルギー放出の効果を表し、SWAN では Hasselmann(1974)の白波モデルを浅海域まで拡張したモ デルを用いている。一方、S_{br}は、波浪が浅海領域に侵 入した時の浅水砕波によるエネルギー散逸の効果を表し、 Battjes and Janssen(1978)のモデルを用いている。また S_{hf} は、浅海領域において底面摩擦によって生じる波浪減衰 の効果を表し、SWAN では Bertotti and Cavaleri(1994)の 式を用いている。S_nは波数の異なる4つの成分波の間に おける非線形相互作用によるエネルギーの輸送の効果を 表し、SWAN では深海条件の Hasselmann (1963)の式に 浅海波の補正係数を乗じて算定している。S_mは、極浅海 域における 3 波成分波間での非線形相互作用エネルギ ーの輸送効果を表し、SWAN では Eldeberky(1996)による 近似解法で求めている。表1には、波浪推算モデル SWAN で用いた記号の定義を示す。

SWAN では各計算格子点上での波浪方向スペクトルを変数としており、周波数 σ の分割数は 32、方向角 θ の分割数は 36 である。

本研究では、図1に示すように2段にネスティングした 解析領域を設定した。SWANにおけるネスティングは1方 向ネスティングであり、外側領域の解析結果を境界条件と して、内側領域の解析を実施する。本研究では、関東地 方・東北南部の沿岸を含む格子解像度0.05°の領域IIを設定した。 側面境界条件は、外側の領域Iにはヨーロッパ中期気象 予報センターECMWFが提供している全球波浪客観解析 データERA40(水平解像度1.5°,時間分解能6時間,方 向スペクトルの周波数分割数25、方向角の分割数12)を 線形内挿した値を用いた。海面の境界条件としては、メソ スケールモデル MM5 により求めた海面上の風速値を用 いる。解析期間は2000年1月から12月の1年間とした。 表2には波浪シミュレーションの解析条件を示す。

Table 1 List of symbols used in SWAN

Symbol	Definition	
Ν	action wave density spectrum	
Ε	wave energy density spectrum ($E = \sigma N$)	
<i>x</i> , <i>y</i>	coordinate of east-west and north-south	
t	time	
$\sigma, heta$	wave radian frequency, wave direction	
C C	propagation velocities in spatial x and y	
c_x, c_y	space	
C C	propagation velocities in spectral space σ	
c_{σ}, c_{θ}	and θ space	
c, c_g	wave phase velocity, wave group velocity	
k	wave number	
h	water depth	
g	gravitational constant	
S_{in}	wave generation by wind	
S_{ds}	dissipation of white-capping	
S _{br}	dissipation of surf breaking	
S_{bf}	dissipation of bottom friction	
S _{nl}	quadruplet nonlinear wave-wave interactions	
S _{tri}	trinity nonlinear wave-wave interactions	

Fig.1 Computational domain for SWAN

Table 2 Computational conditions and grid resolution			
	Domain I	Domain II	

		Domain I	Domain II
Computational domain		138°∼145°E	140°∼143°E
		32°~39°N	34°∼37°N
Grid resolution		0.2°×0.2°	0.05°×0.05°
Grid number		35×35	60×60
Boundary condition	Lateral	ECMWF reanalysis (ERA40)	Nestdown
	Surface	Mesoscale analys	sis (0.5°×0.5°)
Bathymetry resolution	grid	0.25°×0.25°	0.025°×0.025°
Spectrum resolution		36 directions, 32 frequencies (0.052Hz~1 Hz)	
Time step		20min.	10min.

本研究では有義波高 H_sならびにスペクトルピーク周期T_pは、各々波スペクトル密度から次式により求めた⁶。

$$H_{s} = 4\sqrt{\iint E(\sigma,\theta)d\sigma d\theta} \tag{4}$$

$$T_{p} = 1.4T_{m0,2} = 1.4 \times 2\pi \left(\frac{\iint \sigma^{2} E(\sigma,\theta) d\sigma d\theta}{\iint E(\sigma,\theta) d\sigma d\theta}\right)^{-1/2}$$
(5)

ここで、T_{m0.2}はスペクトル平均周期である 7)。

波の観測結果と比べるために、SWAN で算定された波 高、波周期と観測からゼロアップクロス法により求められる 有義波高 $H_{1/3}$ と有義波周期 $T_{1/3}$ との間に、 $H_{1/3} = c_1 H_s$ 並 びに $T_{1/3} = c_2 T_p$ の比例関係があると仮定した⁸⁾。有義波 高の補正係数 c_1 は波高がレーリー分布に従うならば 1.0、 波が砕波帯内ならば 0.95 等の値が示されているが⁹⁾、本 研究では、 $c_1 \ge 1.0$ とした。有義波周期の補正係数 c_2 は、 解析による波周期の年平均値と観測による年平均値の比 から算定し 1.8 とした。

2.2 気象予測

洋上風力発電所を建設する際に必要な風速の時系列 データを得るために、本研究では、コロラド大学で開発さ れたメソスケール気象モデル RAMS (Regional Atmospheric Modeling System)²⁾を用いた。メソスケール 気象モデル RAMS は、風速、仮温位、エクスナー関数、 混合比を従属変数とする質量保存則、運動量保存則、熱 力学方程式、水分の保存則を数値的に解き、初期条件、 境界条件の下で従属変数の時間変化を求める。*x,y,z* 方 向の 3 つの速度成分に関する運動方程式は、それぞれ 以下のように表される。

$$\frac{\partial u}{\partial t} = -u \frac{\partial u}{\partial x} - v \frac{\partial u}{\partial y} - w \frac{\partial u}{\partial z} - \theta_0 \frac{\partial \pi'}{\partial x} + fv + \frac{\partial}{\partial x} \left(K_m \frac{\partial u}{\partial x} \right) + \frac{\partial}{\partial y} \left(K_m \frac{\partial u}{\partial y} \right) + \frac{\partial}{\partial z} \left(K_m \frac{\partial u}{\partial z} \right)^{(6)}$$

$$\frac{\partial v}{\partial t} = -u \frac{\partial v}{\partial x} - v \frac{\partial v}{\partial y} - w \frac{\partial v}{\partial z} - \theta_0 \frac{\partial \pi'}{\partial y} - fu + \frac{\partial}{\partial x} \left(K_m \frac{\partial v}{\partial x} \right) + \frac{\partial}{\partial y} \left(K_m \frac{\partial v}{\partial y} \right) + \frac{\partial}{\partial z} \left(K_m \frac{\partial v}{\partial z} \right)^{(7)}$$

$$\frac{\partial w}{\partial t} = -u \frac{\partial w}{\partial x} - v \frac{\partial w}{\partial y} - w \frac{\partial w}{\partial z} - \theta_0 \frac{\partial \pi'}{\partial z} - \frac{g\theta'}{\theta_0} + \frac{\partial}{\partial x} \left(K_m \frac{\partial w}{\partial x} \right) + \frac{\partial}{\partial y} \left(K_m \frac{\partial w}{\partial y} \right) + \frac{\partial}{\partial z} \left(K_m \frac{\partial w}{\partial z} \right)^{(8)}$$

また、質量保存則は以下のように表される。

$$\frac{\partial \pi'}{\partial t} = -\frac{R\pi_0}{c_v \rho_0 \theta_0} \left(\frac{\partial \rho_0 \theta_0 u}{\partial x} + \frac{\partial \rho_0 \theta_0 v}{\partial y} + \frac{\partial \rho_0 \theta_0 w}{\partial z} \right)$$
(9)

RAMS では熱力学方程式の変数として、Tripoli and Cotton(1982)によって提案された水の相変化に関わらず 保存される物理量である液相・固相の相当温位(ice-liquid potential temperature)を用い、熱力学方程式は、以下のように表される。

$$\frac{\partial \theta_{il}}{\partial t} = -u \frac{\partial \theta_{il}}{\partial x} - v \frac{\partial \theta_{il}}{\partial y} - w \frac{\partial \theta_{il}}{\partial z} + \frac{\partial}{\partial x} \left(K_h \frac{\partial \theta_{il}}{\partial x} \right) + \frac{\partial}{\partial y} \left(K_h \frac{\partial \theta_{il}}{\partial y} \right) + \frac{\partial}{\partial z} \left(K_h \frac{\partial \theta_{il}}{\partial z} \right) + \left(\frac{\partial \theta_{il}}{\partial t} \right)_{rad}$$
(10)

また、水分の保存則は、次式で表される。

$$\frac{\partial r_n}{\partial t} = -u \frac{\partial r_n}{\partial x} - v \frac{\partial r_n}{\partial y} - w \frac{\partial r_n}{\partial z} + \frac{\partial}{\partial x} \left(K_h \frac{\partial r_n}{\partial x} \right) + \frac{\partial}{\partial y} \left(K_h \frac{\partial r_n}{\partial y} \right) + \frac{\partial}{\partial z} \left(K_h \frac{\partial r_n}{\partial z} \right)$$
(11)

式中の記号の定義を表3に示す。

Table 3 List of symbols in RAMS

Symbol	Definition	
и	east-west wind component	
v	north-south wind component	
W	vertical wind component	
x	east-west coordinate	
у	north-south coordinate	
z	vertical coordinate	
t	time	
f	Coriolis parameter	
K_m	eddy diffusivity for moment	
K_h	eddy diffusivity for heat	
θ_0	layer domain-averaged potential temperature	
θ	potential temperature	
$ heta_{il}$	ice-liquid water potential temperature	
r_n	water mixing ratio species of total water, rain,	
	and aggregates	
$ ho_{ heta}$	layer domain-averaged density	
rad	subscript denoting tendency from radiation	
	parameterization	
g	gravitational constant	
π_0	exner function	
π	perturbation exner function	

RAMS にはサブモデルとして、大気放射モデル、積雲 モデル、地表面過程モデル、乱流モデルが組み込まれ ている。乱流モデルとしては、乱流エネルギーおよび乱 流長さスケールは移流方程式を解き、応力方程式に境界 層近似を適用する Mellor-Yamada(1982)のレベル 2.5 を 用いた。また、地表面および海面の境界条件としては Louis(1979)の手法に基づき各方程式のフラックスを計算 する。

本研究では、図 2 に示すように関東地方とその周辺の 山岳地帯を覆う領域を含む外側の領域 I(水平格子間隔 10km)と銚子近傍の海域を含む内側の領域 II(水平格子 間隔 2km)の2 段にネスティングした解析領域を設定した。 表4には計算領域と格子間隔等を示す。ECMWF の全球 客観解析値を初期条件と境界条件とし、2000 年1 月から 12 月までの1年間の解析を行い、時系列風速データを作 成した。

Fig.2 Computational domain for RAMS

Table 4 Computation	al conditions and	d grid resolution

1	U U	
	Domain I	Domain II
Computational domain	139°30'E	140°45'E
center	30°00 N	30°00 N
Grid number $(x \times y \times z)$	77×53×30	76×84×34
Horizontal grid interval $\Delta X \times \Delta Y$	10km×10km	2km×2km
Vertical grid interval	40~1000m	20~1000m
Boundary condition	ECMWF analysis	Nestdown
Time Step	40sec	20sec

2.3 検証用の波浪観測データと気象観測データ

波浪シミュレーションの検証に用いる波浪観測データ は、鹿島港の南東 3km の位置にあるナウファス鹿島観測 地点における 2000 年 1 月から 12 月までの1年間の 2 時 間毎の有義波高と有義波周期のデータ(20 分間観測値) を用いた。また、気象シミュレーションの検証に用いた風 観測データ(10 分平均値)は、銚子地方気象台の 2000 年 1 月から 12 月までの1年間に観測された風速データを用 いた。表 5 には、波浪と気象の観測概要を示す。

Table 5	Description	of wave a	and wind	observation
---------	-------------	-----------	----------	-------------

Wave	Observation period	Year 2000		
	Location	Kashima wave observation facility (NOWPHAS) N35°53'55" F140°45'14"		
	Water depth	24.5m		
	Measuring instrument	Ultrasonic Wave Detector		
	Averaging time	20min. per every even hour		
Wind	Observation period	Year 2000		
	Location	Choshi Local Meteorological Observatory N35°44'18" E140°51'24"		
	Observation height	28.2m		
	Measuring instrument	Propeller-Vane Anemometer		
	Averaging time	10min		

また、予測誤差を定量的に評価するために式(12)に示 す相対誤差 y を用いた。

 $\gamma = (X_s - X_o)/X_o$ (12) ここで、 X_o, X_s は観測と解析から得られた平均値を表わ す。

3. 気象・海象条件の予測と観測による検証

本章では、波浪シミュレーションと気象シミュレーション により算定された波高、波周期、風速について、観測デ ータと比較し、その予測精度を検証する。

図3には、冬季と夏季の代表として2000年の1月と7 月の有義波高の解析値と観測値の比較を示す。図中の プロットは観測値を表し、実線は解析結果を表す。図3か ら、1月では季節風による高波高の周期的変化、7月では 静穏期のうねりに伴う低波高と台風による高波浪の特徴を 概ね再現していることが分かる。ただし、1月5~10日と7 月8日と22日には、有義波高の過小評価がみられる。1 月5~10日の過小評価は大型の低気圧の通過の影響を、 また、7月8日と22日の過小評価は台風3号と台風5号 の通過の影響を受けている。台風ボーガス¹⁰⁾や台風モ デル¹¹⁾を取り入れた解析を行うことにより、精度の向上を 図ることが可能である。

図4には、波高の月別平均値と標準偏差を示す。図中 のプロットは観測値を表わし、実線と点線は解析結果を表 す。解析による有義波高の月平均値は、夏季の6月、7月 に低く、冬季には高くなる太平洋沿岸の特徴を概ね再現 しているが、秋季、冬季では観測値との差異がみられる。 これは夏季の6月、7月の静穏な時期は、波高の再現性 はよいが、秋季、冬季では低気圧による高波高の再現性 が低い時があるためである。また解析による3月と8月の 有義波高の標準偏差は、観測値より低い。これは、3月17 日と20日に通過した低気圧による高波高および8月13 ~15日にかけて通過した台風9号による高波高のピーク を再現できなかったことによるものである。また、図中には 波高の月別相対誤差(黒四角と一点鎖線)をあわせて示 した。波高の月別相対誤差は-21.9%~33.0%の範囲にあ り、12月の相対誤差が最も大きい。月別相対誤差の絶対 値の年平均値は15.0%である。

Fig.4 Comparison of simulated and observed monthly average, standard deviation and relative error of significant wave height

図 5 には、1 月と7 月の有義波周期の解析値と観測値 の比較を示す。1 月の解析結果では、全体的な観測値を 概ね再現している。一方、7 月の解析結果では、7 月 10~ 13 日に過大評価されていることが分かる。

Fig.5 Comparison of simulated and observed significant wave periods

図6には、観測と解析の波周期の月別平均値と標準偏 差を示す。有義波周期の月平均値は7~10sの範囲にあ り冬季1~2月に長めの周期となり、夏季6~7月に低めの 周期となる特徴を解析値ではよく再現しているが、12月の 解析値は過大評価となっている。12月の波周期の過大評 価は、波高の過大評価に対応している。また、周期の標 準偏差は、有義波高と比べると年間を通じて変化が小さく、 解析結果も観測値と概ね一致している。また、図中には 波周期の月別相対誤差(黒四角と一点鎖線)をあわせて 示した。波周期の月別相対誤差は-9.6%~22.6%の範囲 にあり、波高と同様に12月の相対誤差が最も大きい。月 別相対誤差の絶対値の年平均値は8.7%である。

Fig.6 Comparison of simulated and observed monthly average, standard deviation and relative error of significant wave period

図7には、気象シミュレーション RAMS による解析結果 と銚子地方気象台地点における風速の観測結果の比較 を示す。本研究では、RAMS から得られた結果に非線形 風況予測モデル MASCOT (Micro-wind-climate Analysis System for Complex Terrain)¹²⁾を用いて求めた風速比を 乗じることにより微細地形の影響を取り入れた。1 月の解 析結果では、約3日周期のサイクルをよく再現している。 また、7 月の解析結果では概ね観測値を再現している。7 月8日と7月22日には、台風3号と台風5号の通過の影 響を受け、風速が過小評価されている。

図8には、観測と解析の風速の月別平均値と標準偏差 を示す。月平均風速は、冬季に高く、夏季に低くなる特徴 をよく再現している。風速の標準偏差は、年間を通じて観 測値と解析値はよく一致している。また、図中には風速の 月別相対誤差(黒四角)をあわせて示した。風速の月別 相対誤差は-8.8%~18.3%の範囲にあり、冬季の相対誤 差が大きい。月別相対誤差の絶対値の年平均値は 9.2% である。

Fig.7 Comparison of simulated and observed wind speeds

Fig.8 Comparison of simulated and observed monthly average, standard deviation and relative error of wind speed

4. 気象・海象条件と施工稼働率の季節変化

本章では、ナウファス鹿島地点における波高、波周期、 風速の季節別の出現時間を算出し、海象・気象条件の季 節変化を調べると共に、観測値と比較することによりその 予測精度を明らかにする。また作業船の性能により規定さ れる限界波高と波周期の値を変化させ、施工稼働率に与 える影響を調べる。

本研究では嶋田ら¹³⁾の研究を参考に、解析結果に対して各月のバイアス補正を行った。具体的には、各月の 波高、波周期、風速の解析結果の平均値 X_sと観測デー タから得られた平均値 X_oから求めた比(X_o/X_s)を時系 列データに乗じて補正した。

4.1 波高、波周期、風速の季節変化

図9には、季節ごとの有義波高、有義波周期、10分間 平均風速の階級別非超過確率を示す。図下の横軸は、 月あたりの出現時間を示している。図中のプロットは観測 結果、実線、破線、一点鎖線は解析結果を表し、細線は バイアス補正後の結果を表す。

まず、有義波高(黒丸)が 1.0m 未満の合計時間は、春 季、秋季、冬季では月あたり 5~8 日程度であるのに対し て、夏季では 23 日に大きく増大する。この波高の出現時 間の季節変化は、施工稼動率の季節変化に大きな影響 を与える。また解析から得られた波高の秋季と冬季の出 現時間は観測値との差が大きい。これは、秋季と冬季の 平均波高が 1.0m 前後であるため、波高のわずかな予測 誤差が出現時間の再現性に大きな影響を与えるためであ る。月バイアスを補正することにより、秋季と冬季の波高の 出現時間の予測精度が大きく向上した。

次に、有義波周期 8s 未満の合計時間は、月あたり 11 ~20 日程度であり、波高のような大きな季節変化は見ら れない。春季、秋季、冬季の解析結果は観測値をよく再 現しているが、夏季の解析結果は月バイアス補正の有無 によらず、観測値から得られた出現時間を過大評価して いる。

最後に、風速 10m/s 未満の合計時間は、四季を通じて 月あたり25~27日と波高、波周期に比べ長い。このことか ら、風速は施工稼働率に与える影響が小さいことが予想 される。また月バイアスを補正した風速の解析結果は観 測値をよく再現している。

4.2 施工稼働率の季節変化

施工稼働率は、波周期と風速がそれぞれある一定値以 下の時に限界波高の値を下回る時間と全時間との比とし て定義される。本研究では、風速を10m/s以下に設定し、 有義波周期を6秒と8秒以下にした時に、限界波高を変 化させ、月別施工稼動率の変化を調べる。風速10m/sは クレーンの作業限界に対応しており、有義波周期6秒と8 秒は作業船の耐波性能により規定される。

図 10 と図 11 には、月別施工稼動率の限界波高による 変化を示す。ここで、有義波高の限界値を 0.7m、1.0m、 1.3mの3種に変化させた。図 10 には有義波周期6秒以 下、図 11 には8秒以下の結果を示す。有義波周期6秒 以下では(図 10)、いずれの限界波高においても施工稼 働率は非常に低い。有義波周期8秒以下(図 11)かつ限 界波高 0.7mでは、夏季の6月と7月の施工稼働率が高 いが、春季、秋季、冬季の施工稼働率は非常に低い。限 界波高を 1.0m、1.3mへと高くすると、夏季のみならず、 春季、秋季の施工稼働率も高まる。このことから、作業船 の性能を向上させることにより、年間の施工稼働率を上げ ることができることが分かる。図 10 と図 11 に示すように、 解析から得られた施工稼働率は、夏季に過大評価されて いるが、他の季節においては観測から得られた施工稼働 率を概ね再現している。

5. まとめ

本研究では、波浪と気象シミュレーションを実施し、そ の予測精度を観測により検証した。また、波高、波周期、 風速の季節変化と施工稼動率の季節変化の検討を行い、 以下の結論を得た。

- 波浪と気象シミュレーションによる波高、波周期、風速の予測結果は、夏季の低波高と低風速、冬季の高波高と高風速の特徴をよく再現しており、月別予測誤差の絶対値の年平均値は、それぞれ 15.0%、8.7%、9.2%である。
- 2) 1.0m 以下の有義波高の出現頻度は、夏季に高く、春季、秋季、冬季に低い。一方、8.0 秒以下の有義波周期の季節変化は小さく、月あたりの出現頻度は 11~20日程度である。10m/s以下の風速の出現頻度は季節によらず同じ傾向を示し、月あたりの出現頻度は 25~27

日程度である。波浪と気象シミュレーションにより求めた 各季節の有義波高と風速の出現時間は、バイアスを補 正することにより、予測精度が向上したが、有義波周期 の夏季の出現時間はバイアスを補正しても観測値を過 大評価した。

3)有義波周期 6 秒以下の施工稼動率は、いずれの波高 限界においても施工稼働率は非常に低い。有義波周 期 8 秒以下では、限界波高を高くすることにより秋季と 春季における施工稼働率が大きくなる。限界波高と波 周期、すなわち、作業船の耐波性能は、施工稼働率に 与える影響が大きい。解析により求めた施工稼働率は、 夏季に過大評価をしているが、他の季節においては観 測から得られた施工稼働率を概ね再現している。

謝辞

本研究は、独立行政法人新エネルギー・産業技術総合 開発機構(NEDO)の委託業務で得られた研究成果であ る。また波浪シミュレーションに関しては、岐阜大学の小 林智尚教授にご指導とご協力を賜った。ここに記して関係 者の皆様に感謝の意を表する。

Fig.9 Seasonal variation in occurrence frequencies of significant wave height, wave period and wind speed

(a) Measurement (b) Simulation Fig.10 Monthly variation of weather window with maximum allowable wave heights for T< 6s and U \leq 10m/s

(a) Measurement (b) Simulation Fig.11 Monthly variation of weather window with maximum allowable wave heights for T< 8s and U \leq 10m/s

参考文献

- Holthuijsen, L. H.: Waves in Oceanic and Coastal Waters, Cambridge University Press, 2007.
- Pielke, R. A. et al.: A Comprehensive Meteorological Modeling System – RAMS, Meteorol. Atmos. Phys., 49, 69-91, 1992.
- 川口浩二,橋本典明,鈴山勝之:波浪推算値に基づく日本 沿岸波浪の出現特性について,海岸工学論文集,49, pp.216-220,2002.
- 小林智尚, 佐々木博一, 吉野純, 安田孝志: ERA40 にもとづ く日本列島周辺長期波浪データ, 海岸工学論文集, 54, pp.141-145, 2007.
- 5) 小林智尚:波浪推算システムとその応用, 第 38 回水工学に 関する夏期研修会講義集, Bコース, B-7-1-B-7-20, 2002.
- 6) SWAN User Manual SWAN Cycle III Ver.40.72ABCD, 2009.
- Twidell, J. and G. Gaudiosi, eds.: Turbine dynamics and fatigue, Offshore Wind Power, Multi-Science Publishing Co. Ltd., 2009.

- ISO 21650: Actions from waves and currents on coastal structures, 2007.
- 9) 合田良実:耐波工学 港湾・海岸構造物の耐波設計, 鹿島出 版会、2008.
- 大澤輝夫:台風時における 沿岸海上風の推定手法,日本 風工学会誌, Vol.32, No.3, .369-378,2007.
- 11) 石原孟,松井正宏,日比一喜:中立時の大気境界層におけ る強風の鉛直分布特性 その2 台風時の強風,日本風工学 会論文集,66,3-14,1996.
- 石原孟,山口敦,藤野陽三:複雑地形における局所風況の 数値予測と大型風洞実験による検証,土木学会論文集, No.731/I-63, pp.195-211, 2003.
- 13) 嶋田進,大澤輝夫,武藤裕則,鈴木崇之,久保輝広:白浜 海象観測所におけるメソ気象モデルWRFの海上風計算精度, 第31回風力エネルギー利用シンポジウム,pp.153-156,2009.