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1 INTRODUCTION 

IEC 61400-1 (2005) requires that assessment of structural integrity by load calculations 
with reference to site specific conditions is necessary. Equivalent static method is adopted 
to estimate the design wind load on engineering structures by many design codes, in which 
the non-linear part of wind pressure is neglected. Therefore, for wind turbines exposed to 
high wind turbulence in areas with complex terrain like Japan, the design wind load may be 
underestimated, since contribution of the non-linear part of wind pressure is large and the 
response is non-Gaussian. Binh et al. (2008) derived the mean wind load which considers 
the non-linear part of wind pressure and proposed a non-Gaussian peak factor for the design 
of wind turbine towers. This model gives a good performance for the prediction of design 
wind load compared with conventional models.   

Wind Energy Handbook (2001) and Binh’s model are conducted for DLC 6.2 (loss of 
electrical network connection) in IEC 61400-1 (2005). In this abnormal case, the most un-
favorable yaw angle of 0° or ±180° is chosen to calculate the design wind load (Ishihara et 
al. 2005a, 2005b). For 0° or ±180°, the drag force on the rotor is dominant and the lift force 
can be neglected. However, for DLC 6.1 (normal case for yaw control), the yaw angle range 
of 0°±180° shall be analyzed. Therefore, the wind load for arbitrary yaw angle should be 
calculated and the lift force on the rotor may become significant.  

In this study, the wind load evaluation formulas of both along-wind direction and 
across-wind direction are proposed for arbitrary yaw angle. The complex integrals of some 
critical parameters are simplified in order to recognize the dominant influence factor and 
get a clear understanding of how the parameters vary with the size of wind turbine. A new 
non-Gaussian peak factor model is proposed for along-wind direction, which can be re-
duced to the conventional Gaussian form for a Gaussian case. A formula for the combina-
tion of along wind and across wind loads is proposed to calculate the design wind load, 
considering the correlation coefficient of wind responses in the two directions. Finally, the 
proposed formula is verified by FEM (finite element model) simulation. 

2 WIND LOAD FOR ALONG-WIND DIRECTION 

Equivalent static wind load evaluation formula is adopted to estimate the maximum wind 
load on wind turbines:   

2 2
D D D MD D D MRD MBDM M g M gσ σ σ= + ⋅ = + +                                      (1) 

where DM is the mean bending moment, Dg is the peak factor, MDσ is the standard deviation 
which consists of a resonant part MRDσ and a background part MBDσ .  

In the simplification of formulas, the tower height is assumed to be equal to the hub 
height. Wind velocity and turbulence intensity at the hub of the wind turbine are used as 
representative for that of the whole rotor. A uniform equivalent aerodynamic coefficient for 
the whole rotor is used instead of that varying with positions on the rotor. Since in wind 
load of wind turbine tower the effect of the first mode is dominant, only the first mode is 



considered. The first modal frequency f and mode shape ( )rµ for tower refer to Ishihara 
(2007). 

2.1 Mean bending moment 

The mean bending moment at the tower base can be calculated as: 

( ) ( ) ( ) ( )2 21
, 1

2
D D u

wt
M C r c r U r I r rdrρ θ  = + ∫                                       (2) 

where ρ is the air density, ( ),DC r θ is the drag aerodynamic coefficient,θ is yaw angle, ( )c r is 
the characteristic length of the element at position r , ( )U r is the mean wind velocity, ( )uI r is 
the turbulence intensity in the along-wind direction, and wt denotes the areas which con-
tribute to the mean bending moment at the tower base. To consider non-linear part of wind 
force, the term of ( )2

uI r  is taken into account to calculate the mean wind load.  
A 400kW stall-regulated wind turbine is taken as an example. From Figure 1, it can be 

seen that compared to the underestimation of linear formula, the nonlinear formula of this 
study gives more accurate mean bending moment, especially for high turbulence intensity 
the calculated load is increased by more than 6%, and the error is limited to less than 3%.  
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Figure 1. Comparison of mean bending moment (400kW). 

2.2 Standard deviation 

Both resonant and background standard deviation should include two components, which 
depend on the longitudinal and lateral wind fluctuation, respectively. By numerical simula-
tion, it is found that MRDvσ and MBDvσ due to lateral wind fluctuation v can be neglected 
compared to MRDuσ and MRDuσ  due to longitudinal wind fluctuation u . Hence, the resonant 
and background standard deviation can be expressed as 

( ) ( )
2

2 2 2 2

2
2
1 4

D D
MRD MRDu MRDv MRDu u u MRDu

u D

M
I R f K f

I

πφ
σ σ σ σ

πξ

 
= + =  

+  
≐    (3) 

2

2 2 2 2

2
2
1

D

MBD MBDu MBDv MBDu u MBDu

u

M
I K

I
σ σ σ σ

 
= + =  

+  
≐  (4) 

where ( )uR f is the power spectral density of longitudinal wind fluctuation u . 

(a) Mode correction factor  

Assuming that the tower has uniform mass distribution and diameter along its height, the 
integral calculation of mode correction factor Dφ can be simplified as Equation 5. A unified 
mode correction factor is obtained for different wind turbines and different terrain catego-
ries. The parameters Mγ , aλ and bλ are determined as the average of the results of different 
wind turbines of 100kW-2000kW, respectively. 0.9c = is a correction factor due to the ap-
proximation during the simplification. Figure 2a shows a good agreement between the sim-
plified formula and the integral calculation. Dφ varies with yaw angle in a range of 0.85-1.0, 
larger than 0.81 of tower, which means that the existence of rotor increases the mode cor-
rection factor.  
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where ( )m r is the mass per length of the element at position r , rm and tm are the mass of rotor 
and tower, respectively, sm is the total mass of wind turbine, Tm is the generalized mass of 
the whole wind turbine,H is the hub height, HU is the mean wind velocity at hub height, rA is 
the rotor area, ( )r

DC θ is the equivalent aerodynamic coefficient for rotor, and t
DC is the aero-

dynamic coefficient for tower.  

(b) Size reduction factor 

Referring to the resonant and background size reduction factors in AIJ (2004), the formula 
formats for lattice structures are adopted in this study for simplification, as shown in Equa-
tions 6 and 7, taking the rotor radius R as the characteristic size of the whole wind turbine. 
The non-dimensional decay factor 8.0C = is used here. Figures 2b, c show a good agreement 
between the simplified formula and the integral calculation for each size reduction factor. 
Both resonant and background size reduction factors vary in the range of 0-1.0, and the 
background one decreases when the wind turbine size increases. However, the resonant one 
doesn’t have this feature, since it is also related to the natural frequency of wind turbine.            

( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( )2 2

exp , , 1

, 1 0.26

H D D

MRDu

D

H

C r r f U C r C r c r c r r r drdr
K f

CfRC r c r r dr

U

θ θ µ µ

θ µ

′ ′ ′ ′ ′ − − 
= =

 
+ 

 

∫ ∫
∫

 (6) 

( ) ( ) ( ) ( )

( ) ( )( )2
exp 0.3 , , 1

1 0.69,
0.3

u D D

MBDu

D
u

r r L C r C r c r c r rr drdr
K

R
C r c r rdr

L

θ θ

θ

′ ′ ′ ′ ′ − − 
= =

+

∫ ∫
∫

             (7) 

where uL is the along-wind turbulence integral length scale. 

0

0.2

0.4

0.6

0.8

1

1.2

-180 -135 -90 -45 0 45 90 135 180

100kw (integral)
400kw (integral)
500kw (integral)
1000kw (integral)
1500kw (integral)
2000kw (integral)
simplified formula

φ D

Yaw angle (deg)

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

integral calculation
simplified formula

K
M
R
D
u

Rotor radius R  (m)

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

integral calculation
simplified formula

K
M
B
D
u

Rotor radius R  (m)         
     (a) Mode correction factor        (b) Resonant one ( )MRDuK f        (c) Background one MBDuK  

Figure 2. Comparison of mode correction factor and size reduction factors. 

(c) Damping ratio 

The aerodynamic damping ratio aDξ can be simplified as Equation 8. The total damping ra-
tio Dξ is the summation of structural damping ratio sξ and aerodynamic damping ratio. 
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D s aDξ ξ ξ= +  (9) 

where ( ) / 2a top bottomD D D= + , topD and bottomD are the diameter of the top and bottom of tower, 
respectively. Figure 3a shows a good agreement with the integral calculation for aerody-
namic damping ratio.  

Using the equivalent aerodynamic coefficient instead of the actual one on rotor can 
generate some error, especially for resonant standard deviation. Therefore, a correction fac-
tor ( ) 1/ 1.0 0.3cos2f θ θ= + should be multiplied in the final simplified resonant standard de-
viation. Figure 3b shows a good agreement between the simplified formula, the integral cal-
culation and FEM simulation for standard deviation. 
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2.3 Peak factor 

In order to take the non-linear component of wind load into account, Kareem et al. (1998) 
evaluated the peak factor for the non-Gaussian case by employing the moment-based Her-
mite transformation which has been shown to be accurate and robust. Binh et al. (2008) 
proved that the effect of kurtosis 4α  can be neglected since it is negligibly small compared 
to that of the second and third order from the order analysis of turbulence intensity

uI . 4α is 
then assumed to be equal to the value of a Gaussian process (i.e., 0). Binh et al. (2008) pro-
posed a formula of skewness 3α for wind turbines as well, considering both significant reso-
nant response and spatial correlation of wind load using a correlation coefficient 

( ), exp 0.3 ur r r r Lρ ′ ′ = − −  . Finally, the non-Gaussian peak factor becomes Equation 10.

 For a Gaussian case, 3 0α = which reduces this peak factor to the standard Gaussian form.  
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Dν ′  and Dν are the zero up-crossing number in the estimated time interval T (normally 
600s) of non-Gaussian process and Gaussian process, respectively, and wtA is the wind act-
ing area of the whole wind turbine. 

 Figure 3c shows how the maximum bending moment on the tower base of this study 
strongly correlates with the FEM simulation in arbitrary yaw angle. It is also noticed that 
the linear model underestimates the along-wind maximum bending moment obviously.                                 

3 WIND LOAD FOR ACROSS-WIND DIRECTION 

Equivalent static method is also applicable to across-wind direction.    
2 2

L L L ML L L MRL MBLM M g M gσ σ σ= + ⋅ = + +                                       (11)   

3.1 Mean bending moment 

The mean bending moment at the tower base can be calculated as: 

( ) ( ) ( ) ( )2 21
, 1

2
L L u

wt
M C r c r U r I r rdrρ θ  = + ∫                                      (12) 

where ( ),LC r θ is the lift aerodynamic coefficient. Figure 4 shows a good agreement with 
FEM simulation and the effect of nonlinear wind pressure on the mean bending moment is 
not so significant as that of along-wind direction. 
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Figure 4. Comparison of mean bending moment (400kW). 

3.2 Standard deviation  

For wind turbine, the across-wind mean bending moment LM becomes close to zero at some 
yaw angles. In this study, the along-wind mean bending moment DM is employed to calcu-
late the across-wind standard deviation of bending moment. Unlike the along-wind direc-
tion, in both resonant and background standard deviation MRLσ and MBLσ , neither part 
caused by the two wind fluctuation components u and v can be neglected. 
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where ( )vR f is the power spectral density of lateral wind fluctuation v . 

(a) Mode correction factor  

The mode correction factor Lφ is the same as that of along-wind direction  

L Dφ φ=                                                                 (15) 

(b) Size reduction factor 



The correlation factors ( ) ( ), , ,MRLu MRLv MBLu MBLvK f K f K K′ ′ ′ ′ in across-wind direction can be writ-
ten as the product of conventional size reduction factor and wind force ratio, as shown in 
Equations 16-19. The conventional size reduction factors can be simplified by the same ap-
proach as that for along-wind direction. 
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(19) 

where ( ) ( ) ( ), 0.5 , , /L D LA r C r C rθ θ θ θ = + ∂ ∂  , ( )r
LC θ and ( )r

LA θ are the equivalent aerodynamic 
coefficients for rotor in the across-wind direction and vL is the across-wind turbulence inte-
gral length scale. Figure 5 shows a good agreement between the simplified formula and the 
integral calculation for each size reduction factor. 
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Figure 5. Comparison of size reduction factors. 



(c) Damping ratio 

It should be noted that for across-wind direction, since the aerodynamic damping ratio 

aLξ may become negative at some yaw angle, Equation 21 is used to limit the total damping 
ratio Lξ not less than the structural damping ratio in order to avert an unstable response.  
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( )max ,L s aL sξ ξ ξ ξ= +                                                       (21)   

Figure 6a shows a good agreement between the simplified formula and the integral 
calculation for aerodynamic damping ratio. Figure 6b shows a good agreement between the 
simplified formula, the integral calculation and FEM simulation for standard deviation.  

3.3 Peak factor 

For the across wind response, the Gaussian peak factor is used in this study and is expressed 
as 
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Figure 6c shows how the maximum bending moment on the tower base of this study 
strongly correlates with the FEM simulation in arbitrary yaw angle.  
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Figure 6. Comparison of aerodynamic damping ratio, standard deviation and maximum bending moment. 

4 COMBINATION OF WIND LOADS 

It has been noticed that the maximum values of along wind and across wind loads can’t oc-
cur simultaneously. Hence, the correlation coefficient of wind responses in the two direc-
tions should be considered. Referring to Asami (2000), the maximum wind load acting on 
the tower for any yaw angle can be estimated as 

( ) ( )2 22 2max ( ) ,  ( )DL L D DL D D D L DL L LM M M M M M M M Mγ γ
 

= + + − + + − 
 

                (23)
                                                     

where 2 2 1DL DLγ ρ= + − , DLρ is the correlation coefficient between along wind and across 
wind responses, which can be determined by Table 1 for stall-regulated wind turbines. Fig-
ure 7 shows the comparison of the simplified formula, and FEM simulation. It is obvious 
that for any yaw angle, the correlation coefficients shown in Table 1 give a good agreement 
with FEM simulation. It is also noticed that the uncorrelated approximation ( DLρ = 0) un-
derestimates the maximum bending moment, while for the yaw angle range of ±90°±15°, 
completely correlated approximation( DLρ = 1) gives a significantly conservative result, with 
the error of nearly 20% at maximum.  



Table 1. Correlation coefficients between 
along wind and across wind responses  

  (deg)θ  DLρ  

(1) 
-180 ~ -110 
-80 ~ 70 
100 ~ 180 

1.0 

(2) -90, 80 0.0 

(3) 

-110 ~ -90 
-90 ~ -80 
70 ~ 80 
80 ~ 100 

linear interpolation 
between (1) and (2) 
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Figure 7. Comparison of combined maximum bending mo-
ment (400kW). 

5 CONCLUSIONS 

In this study, the wind load evaluation formulas of both along-wind direction and across-
wind direction are proposed for arbitrary yaw angle. The complex integrals of some critical 
parameters are simplified. Though the simplification, a unified mode correction factor is 
proposed. It varies with yaw angle in a range of 0.85-1.0, larger than that of tower due to 
the existence of rotor. Both resonant and background size reduction factors vary in the 
range of 0-1.0, and the background one decreases when the wind turbine size increases. 
However, the resonant one doesn’t have this feature, since it is also related to the natural 
frequency of wind turbine. A new non-Gaussian peak factor model is proposed for along-
wind direction, which can be reduced to the conventional Gaussian form for a Gaussian 
case. A formula for the combination of along wind and across wind loads is proposed to 
calculate the final design wind load considering the correlation coefficient in the two direc-
tions. It is also noticed that the uncorrelated approximation underestimates the maximum 
bending moment, while for the yaw angle range of ±90°±15°, completely correlated ap-
proximation gives a significantly conservative result. All the proposed formulas have been 
verified using FEM simulation. 
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