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ABSTRACT: Flow fields of tornado-like vortices generated by a numerical tornado simulator 

have been investigated using the LES turbulence model for two typical swirl ratios. The results 
showed that the core radii of vortices with swirl ratios of 0.31 and 0.65 agree favorably with visual-
ized vortices by a laboratory tornado simulator. Mean velocity fields were examined to obtain de-
tailed corner flow patterns. It was found that a one-cell type vortex with a central upward flow ap-
pears for the case of low swirl ratio and vertical velocities show peaks at the center of the vortex, 
while a two-cell type vortex with a central downward flow emerges for the case of high swirl ratio 
and the maximum tangential velocity appears near ground. The formations of one-cell and two-cell 
type vortices were investigated by examining axisymetric time averaged Navier-Stokes equations. 
The vertical pressure gradient generates vertical velocities at the center of vortex in the one-cell 
type vortex, while the centrifugal force balances with the radial pressure gradient and the vertical 
advection term of the radial velocity in the two-cell type vortex. 

1 INTRODUCTION 

Tornados are vortices with strong three-dimensional flow fields and cause damages more 
serious than other wind-induced disasters. Wind resistant design against tornados requires 
accurate information about the three-dimensional flow field of tornado. However, little in-
formation could be acquired by field measurements due to its small spatial scale and low 
frequency of occurrence. Laboratory experiments have been conducted by Ward (1972), 
Wan and Chan (1972) Monji and Mitsuta (1984), Matsui and Tamura (2006) and Haan et 
al. (2008) in order to obtain the detailed information of the flow field of tornado-like vor-
tex. Numerical simulations have also been conducted by Howells et al. (1988), Lewellen 
and Lewellen (1997, 2007), Lewellen et al.(1999) and Kuai et al. (2008). The mechanism 
of the formation of three-dimensional flow fields in tornado-like vortices has not been fully 
proven yet. 

This paper presents some results obtained by a numerical tornado simulator using LES 
turbulence model. Section 2 describes the numerical model used in this study. In Section 3, 
the three-dimensional flow fields are examined and compared with the experimental data to 
verify the performance of the numerical model. Finally axisymetric time averaged Navier-
Stokes equations are evaluated to reveal the mechanism of the formation of the flow field in 
section 4. 
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2 NUMERICAL MODEL 

2.1 Governing equations and turbulence model 
The governing equations employed in LES model are obtained by filtering the time-
dependent Navier-Stokes equations as follows: 
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where iu  and p~  are filtered mean velocity and filtered pressure respectively. ρ is den-
sity, ijτ  is subgrid- scale stress and is modeled as follows: 
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where tµ  is subgrid-scale turbulent viscosity, and ijS~ is the rate-of-strain tensor for the 
resolved scale. 

Smagorinsky-Lilly model is used for the subgrid-scale turbulent viscosity, 

ijijsst SSLSL ~~2~2 ρρµ ==  ,   ( )3/1,min VCL ss κδ=                (4) 
where sL  is the mixing length for subgrid-scales, κ is the von Karman constant, 0.42, sC  
is Smagorinsky constant, δ  is the distance to the closest wall andV is the volume of a 
computational cell. In this study, sC  is determined as 0.032 as used in Oka and Ishihara 
(2009). 

Finite volume method and unstructured collocated mesh are used for the present 
simulations. SIMPLE (semi-implicit pressure linked equations) algorithm is employed for 
solving the discritized equations (Ferziger and Peric, 2002) 

2.2 Configurations of the numerical tornado simulator 
In this study, Ward-type tornado simulator is numerically modeled. Figure 1 shows the 
overview of the numerical tornado simulator and mesh used in the simulation. Mesh den-
sity is higher at center to capture the vortex structure. Constant velocity boundary condition 
is given at the top of the simulator to generate upward flow in the tornado. 

Swirl ratio is an important parameter to determine the structure of a tornado-like vor-
tex. The swirl ratio defined by Ward (1972) is used in this study as follows: 

tan
2ES S

a
θ

= =                                   (5) 

where θ  is the angle of the guide vane, and a  is the aspect ratio of the inflow height , 
h , to the radius of the hole , 0r . 

Two representative swirl ratios are chosen to examine the different type of the struc-
ture of vortex. The case of 0.31S =  represses a low swirl ratio vertex and the case of 

0.65S =  denotes a high swirl ratio one. Table1 shows the parameters used in this study, 
where cV  is the maximum tangential velocity at the radius of cr  in a cyclostrophic bal-
ance region. 
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Figure1. (a) Overview of the numerical tornado simulator and (b) mesh used in this study. 

 
Table 1. Parameters and representative values used in this study. 
Case  a     θ    S     cV       cr     
1   1.33  40deg.  0.31  13.0m/s   4.83mm 
2   1.33  60 deg.  0.65  8.3m/s   32.5mm 

3 MEAN VELOCITY AND PRESSURE FIELD 
 
In order to examine flow field in the tornado-like vortices, the simulated vortices are visu-
alized by the instantaneous streamlines and compared with the flow visualization obtained 
from the experiment. The normalized mean velocities as well as pressures are discussed 
and compared with the laboratory data in this section. 

Experimental results obtained by Monji and Mitsuta(1984) and Matsui and Tamura 
(2006) are used for the validation of the numerical model. Monji and Mitsuta measured the 
vertical velocity using hot-wire anemometer, while Matsui and Tamura measured the tan-
gential velocity using the laser Doppler velocimeter. 

 

(c) S =0.31

(a) S =0.31 (b) S =0.65

(d) S =0.65(c) S =0.31

(a) S =0.31 (b) S =0.65

(d) S =0.65  
Figure 2. Comparison of (a, b) streamlines calculated by the numerical simulation and (c, d) flow visualiza-
tions.  
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Comparisons of the instantaneous streamlines calculated from the numerical results 
and the flow visualizations obtained from the laboratory by Matsui and Tamura (2006) are 
shown in Figure.2. Streamlines and flow visualizations show that the core radii are small 
for the low swirl ratio case and large for the high swirl ratio one. The shapes of the vortices 
show satisfactory resemblance, indicating that the numerical simulator can generate tor-
nado-like vortex as the laboratory simulator. 

   The flow patterns strongly depend on the swirl ratio. The predicted velocity vectors 
in r z−  plane are shown in Figure 3 for the two swirl ratios, where z  is the height and 
r  is the radius. In the Figure 3(a), a strong updraft appears in the center of the vortex, 
forming a one-cell type vortex for the case of 0.31S = , while a downward flow reveals in 
the center of the vortex generating a two-cell type vortex for the case of S=0.65 in Figure 
3(b). In order to examine mean velocities in the vortices, radial distribution of normalized 
velocity components are plotted at various heights in Figure 4 to 6 for the two swirl ratios. 

 
    (a) 0.31S =               (b) 0.65S =  

Figure 3. Velocity vectors in r-z plane for (a) 0.31S =  and (b) 0.65S = . 
 
In the case of 0.31S = , the mean radial velocities are all negative and decreases with 

the increase of height as shown in Figure 4(a). The maximum value appears at the lowest 
elevation of 0.2 cz r=  and reaches to 0.5 cV . On the other hand, the mean radial velocities in 
the case of 0.65S =  show positive values near the center of the vortex at the lower eleva-
tions. The absolute values of maximum positive and negative radial velocities are close to 
0.5 cV . The maximum normalized radial velocities in these two cases are same as the value 
proposed by Simiu and Scanlan (1996).  

Figure 5 shows radial distributions of normalized tangential velocity at various 
heights obtained from the numerical simulations and experiment by Matsui and Tamura 
(2006). Velocity distributions at two higher elevations are almost the same, and predicted 
tangential velocities agree satisfactorily with laboratory data. In the surface layer, tangen-
tial velocities decrease in the case of 0.31S = , while they increase in the case of 0.65S = . 
The maximum value for 0.65S =  reaches to 1.4 cV . This increase in the tangential velocity 
near the surface is important for wind resistant design, since most of engineering structures 
exist in this region. 

Radial distributions of normalized vertical velocities at various heights for two swirl 
ratios are shown in Figure 6. In the case of 0.31S = , the vertical velocities take their maxi-
mum values at the center of the vortex and increase with the increase of height. The maxi-
mum vertical velocity is about 1.8 cV  at 2 cz r= . On the other hand, for 0.65S = , the verti-
cal velocities show their maximum values close to 0.6 cV , which are almost same as the 
value of 0.67 cV  proposed by Simiu and Scanlan (1996). The normalized vertical velocities 
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from the laboratory by Mitsuta and Monji (1984) are also plotted in Figure 6 (b) for the 
comparison and the predicted velocities at 2 cz r=  show a good agreement with the meas-
ured those at 1.3 cz r= . 

-1

-0.5

0

0.5

1

0 0.5 1 1.5 2 2.5 3 3.5 4

Z=0.2rc

Z=0.5rc

Z=1rc

Z=2rc

U
/V
c

r/r
c

(a)　S=0.31

-1

-0.5

0

0.5

1

0 0.5 1 1.5 2 2.5 3 3.5 4

Z=0.2rc

Z=0.5rc

Z=1rc

Z=2rc

U
/V
c

r/r
c

(a)　S=0.31       

-1

-0.5

0

0.5

1

0 0.5 1 1.5 2 2.5 3 3.5 4

Z=0.2rc

Z=0.5rc

Z=1rc

Z=2rc

U
/V
c

r/r
c

(b)　S=0.65

-1

-0.5

0

0.5

1

0 0.5 1 1.5 2 2.5 3 3.5 4

Z=0.2rc

Z=0.5rc

Z=1rc

Z=2rc

U
/V
c

r/r
c

(b)　S=0.65  
Figure 4. Radial distribution of normalized radial velocities at various heights for (a) 0.31S =  and (b) 

0.65S = . 
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Figure 5. Radial distribution of normalized tangential velocities at various heights for (a) 0.31S = and (b) 

0.65S = . Matsui denotes laboratory data obtained by Matsui and Tamura (2006). 
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Figure 6 Radial distribution of normalized vertical velocities at various heights for (a) 0.31S = and (b) 

0.65S = . M&M denotes laboratory data obtained by Monji and Mitsuta (1984). 
 



The Fifth International Symposium on Computational Wind Engineering (CWE2010) 
Chapel Hill, North Carolina, USA  May 23-27, 2010 

 

Figure 7 shows radial distribution of normalized pressure at various heights for 
0.31S =  and 0.65S = . It is obvious that there are distinct differences between these two 

cases. In the case of 0.31S = , pressure gradients decreases rapidly with the increase of 
height, while pressure gradient at various heights are almost same in the case of 0.65S = . 
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Figure 7. Radial distribution of normalized pressure at various heights for (a) 0.31S =  and (b) 0.65S =  

4 FORCE BALANCES IN THE TORNADO-LIKE VORTICES 

Considering the tornado induced damages to the structures, the high wind speeds observed 
in the numerical tornado simulator are important and their mechanisms have to be revealed. 
In this section, axisymmetric time-average Navier-Stokes equations are derived and the 
force balances are investigated to reveal the mechanism of those phenomena. 

To examine the mechanism of the high vertical velocity at the center of the vortex in 
the case of 0.31S = , vertical components of the axisymetrical Navier-Stokes equation is 
derived as: 

21
w

W W P uw w uwU W D
r z z r z rρ

 ∂ ∂ ∂ ∂ ∂
+ = − − + + +  ∂ ∂ ∂ ∂ ∂ 

                               (6) 

where u , v  and w  denote the radial, tangential and vertical component of fluctuating 
velocity, z  is the height above ground and r  is the radius from the center of the simula-
tor. 

The left hand side consists of radial ( rwA ) and vertical ( zwA ) advection terms. The 
right hand side of the equation is the vertical pressure gradient term ( zP ), Reynolds stress 
term ( wT ), and the diffusion term ( wD ). For the low swirl ratio case, four terms in Eq. (6) 
on the vortex axis are estimated and shown in Figure 8 (a). Among all the terms, the contri-
butions from the vertical pressure gradient and the vertical advection term are dominant. 
This indicates that this equation can be approximated as the balance equation of vertical 
pressure gradient and the vertical advection. From this balance, the vertical wind velocity, 
W , can be predicted as: 

12 PW dz
zρ

 ∂
= − ∂ ∫                                (7) 

The estimated vertical velocity from the pressure gradient by this model and the 
simulated vertical velocity are shown in Figure 8 (b). The proposed model shows good 
agreement with the simulation, which suggests the large vertical velocity in case of S=0.31 
is formed by the large pressure gradients. 
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(a) Normalized force terms                   (b) Vertical velocities 

Figure 8 Vertical distribution of (a) normalized force terms of Navier-Stokes equation and (b) the vertical ve-
locities at 0r =  for 0.31S = . 
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Figure 9. Radial distribution of (a) normalized force terms of Navier-Stokes equation and (b) the tangential 
velocities at 0.25 cz r=  for 0.65S = . 

The mechanism of the strong tangential velocity in the high swirl ratio case is inves-
tigated by considering the force balance of the radial component of the Navier-Stokes equa-
tion. The radial term of the axisymetric Navier-Stokes equation can be written as: 

2 2 2 21
u

U U V P u uw v uU W D
r z r r r z r rρ

 ∂ ∂ ∂ ∂ ∂
+ − = − − + − + +  ∂ ∂ ∂ ∂ ∂ 

                           (8) 

The left hand side of this equation consists of the radial ( ruA ) and vertical ( zuA ) ad-
vection term and the centrifugal force term ( rC ). The right hand side of the equation is the 
radial pressure gradient term ( rP ), Reynolds stress term ( uT ), and the diffusion term ( uD ). 
Five terms in Eq. (8) at the heights of 0.25 cz r=  and 3.0 cz r=  are estimated and those at 

0.25 cz r=  are shown in Figure 9 (a) for the high swirl ratio case. The centrifugal force at 
3.0 cz r= balances with the pressure gradient term, while that at 0.25 cz r=  balances with the 

pressure gradient term and the vertical advection term, and the tangential velocity, V , can 
be estimated as: 

2 2 1
p A

P UV V V r W r
r zρ

∂ ∂
= + = +

∂ ∂
                           (9) 

The tangential velocities calculated by this model and those from the simulation are 
plotted in Figure9 (b). The calculated tangential velocity by the model shows good agree-
ment with the simulation. The tangential velocity, pV , is smaller than the simulated one 
when the tangential velocity is estimated by the pressure gradient term. This indicates that 
the increase of tangential velocity near the surface in the two-cell type vortex comes from 
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the vertical advection term ( zuA ). The mechanism of the flow field is supposed that pres-
sure gradient is independent of the height and the ground pressure gradient does not bal-
ance with the centrifugal force because of the friction. As a result, large radial inflow oc-
curs near the ground and causes the increase in the tangential velocity there. 

5 CONCLUSION 

In this study, flow fields of tornado-like vortices generated by a numerical tornado simula-
tor have been investigated using the LES turbulence model for two typical swirl ratios. Fol-
lowing conclusions were obtained. 
1) The core radii of vortices with swirl ratios of 0.31 and 0.65 from the numerical tornado 

simulator agree favorably with visualized vortices by the laboratory one. 
2) A one-cell type vortex appears for the low swirl ratio case, in which the vertical veloci-

ties show peaks at the center and the tangential velocity decreases as the height de-
creases. On the other hand, a two-cell type vortex appears for the high swirl ratio case, in 
which the maximum tangential velocity appears at the level close to the ground and the 
peaks of vertical velocity are observed near the radius of maximum tangential wind. 

3) The maximum vertical velocity at the center of the vortex is generated by the vertical 
pressure gradient and reaches 1.8 times of cV  for the low swirl ratio case. On the other 
hand, the centrifugal force at the height of 0.25 cz r=  balances with the radial pressure 
gradient and the vertical advection term of the radial velocity, and the maximum tangen-
tial velocities there is as much as 1.4 times of cV  for the high swirl ratio case. 
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