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ABSTRACT 
 

Rectangular prisms of high thickness ratio experience vortex-induced vibrations at the 
reduced velocities near and lower than critical velocity (Uc). Being the common configuration 
for buildings and bridge sections, it is necessary to investigate the aerodynamic characteristics 
of rectangular prisms in detail. Aeroelastic instability of rectangular cylinders of infinite length 
and breadth-to-depth ratio ranging from B/D=2.0 to 4.0 were investigated numerically in a 
heaving mode by LES method under smooth flow conditions. Investigations are carried out 
employing forced oscillation method For B/D=2 and 4 with amplitudes of 0.1D to 0.02D 
respectively. In this study, attention was focused on frequency response component of unsteady 
lift force at low reduced velocities. The accuracy of results obtained by LES is assessed by 
comparing the numerical results with the experimental results from previous studies. 
 
 

INTRODUCTION 
 

Aeroelastic instabilities of rectangular prisms have received particular interest from both 
academic and practical, because of common use of such configurations in building and bridge 
industry, standpoints. Rectangular prisms have quite unique aerodynamic characteristics in the 
present context; the boundary layers separating from the sharp edges may remain separate or 
have intermittent attachment to the surface depending upon the breadth-to-depth ratio of prisms. 
Thus, making the whole process almost independent of Reynolds number (RN) effects, which 
are otherwise prominent for a circular cylinder. A number of experimental studies conducted on 
this subject can be found in literature. However, numerical attempts to the prediction of such 
characteristics are scarce in literature. 
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Experimentally, many researchers like Washizu (1978), Nakamura (1975) etc. have 
investigated the aeroelastic instability of rectangular prisms under free and forced vibrations in 
detail.  These studies evaluated the frequency response component (FRC) of the unsteady lift 
force coefficients because of its direct association with the onset of instability. Also the 
correlation between the unsteady lift force and velocity variation in the near wake were traced 
out. Komatsu (1980) conducted detailed investigations focusing on the pressure fluctuation over 
the surface and has explained the way a vortex is formed and shed into wake. On the other hand, 
many numerical studies have been carried out in this area but these were only limited to 
determination of mean drag, lift force and Strouhal number of square prisms (Hirano et al., 
2000).  In addition, Shimada (1999,2001) made use of k-e model to investigate the aerodynamic 
characteristics of 2 dimensional rectangular prisms of varying width-to-breadth ratio 
(2.0§B/D¥8.0). But considerable underestimation of total fluctuations in surface pressure and 
lift force were reported. Recently, Ishihara (2003) successfully applied LES approach to predict 
the aerodynamic features of 3D square prism in uniform flow with respect to various angles of 
attack.  Thus, concluding the validity of LES method for prediction of mean aerodynamic 
features of square prisms. In summary, the performance of LES model to predict the 
aerodynamic instability needs to be investigated. 

In this study, the aeroelastic instability of rectangular cylinders, with emphasis on the 
effects of B/D ratio on the aeroelastic phenomena, is investigated by LES approach. Basically, 
investigations are done at low wind speeds, to capture the vortex-induced vibrations, under 
forced oscillations. The results are compared with experimental results and also, examined to 
evaluate if this approach can be used for such predictions. 
 
NUMERICAL APPROACH 
 

LES turbulent model is used for this study in which small eddies are modeled whereas 
large eddies are directly calculated. Capability of LES model to capture turbulence 
characteristics that are unsteady and three dimensional in nature makes it the most suitable 
approaches for this study.  
 
Governing Equations 

The governing equations employed for LES are obtained by filtering the time-dependent 
Navier-Stokes equations as follows: 
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where ju  and p are filtered mean velocity and filtered pressure respectively. ρ and ijτ  is 
the subgrid-scale stress defined by: 

i jij i ju u u uτ ρ= −  (3)

The subgrid-scale stresses resulting from the filtering operation are unknown, and 
modeled as follows; 
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where tμ is the subgrid-scale turbulent viscosity, and ijS is the rate-of-strain tensor for 
the resolved scale defined by 
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The Finite Volume Method was used for the descritization of governing equations. 
QUICK scheme for convective terms and the second order implicit scheme for unsteady terms 
were used. SIMPLEC method was used to solve the discritized equations. The oscillation of the 
models is achieved by using the sliding mesh technique. FLUENT, CFD software is used as 
solver. 
 
Smagorinsky-Lilly model 

The subgrid-scale turbulent viscosity tμ is modeled using Smagorinsky model. In the 
Smagorinsky model, the eddy-viscosity is modeled as 
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where Ls is the mixing length for subgrid-scales, and defined as 
1
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where k is the von Kármán constant, Cs is the Smagorinsky constant, δ is the distance to 

the closest wall, and V is the volume of the computational cell. An order of 0.1 for Cs is widely 
used in which normally explicit discritization schemes are used. Negative and positive 
numerical diffusion is generated in explicit and implicit discritization schemes respectively. 
Therefore, in this study smaller value of Cs, 0.032, is used based on the study in which spectrum 
approach was applied to a LES calculation (Ma et al. 2000). 
 
Boundary Conditions for the LES model 

If the mesh is fine enough to resolve the laminar sublayer, the wall shear stress is 
obtained from the laminar stress-strain relationship: 
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If the mesh is too coarse to resolve the laminar sublayer, it is assumed that the centroid 
of the wall-adjacent cell falls within the logarithmic region of boundary layer, and the law-of-
the-wall is employed: 
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Where uτ  is the friction velocity, k (von Kármán) constant is 0.418 and constant E is 
9.793. 

 
Sliding mesh theory 
In the sliding mesh, two or more cell zones are used. Each cell zone is bounded by at least one 
“interface zone” where it meets the opposing cell zone. The interface zone of adjacent cell zones 

 



is associated with one another to form a “grid interface”. The two cell zones will, then, move 
relative to each other along the grid interface. In doing so, the grid faces do not need to be 
aligned on the grid interface. This situation requires a means of computing the flux across the 
nonconformal interface zones of each grid interface. 
 To compute the interface flux, the intersection between the interface zones is determined 
at each new time step. The resulting intersection produces one interior zone and one or more 
periodic zones/a pair of wall zones. The resultant interior zone corresponds to where the two 
interface zones overlap; the resultant periodic/wall zone corresponds to where they do not. The 
number of faces in these intersection zones will vary as the interface zones move relative to one 
another. Principally, fluxes across the grid interface are computed using the faces resulting from 
the intersection of the two interface zones, rather than from the interface zone faces themselves. 
  
Description of grid domain 

In this study, two width to breadth ratios B/D=2.0 and 4.0 are used, because these two 
cases are typical of fully separated and intermittently reattached type of sections. Fig 1 shows 
computational domain used in this study along with the static zone, moving zone and interface 
zones. The dimensions of each prism model are shown in table 1. The corners are considered 
rounded with radius to depth ratio (r/D) of 0.01 as shown in Fig 2. The width and depth of 
domain are 100D and 60D respectively. Inflow wind-velocity “U” is kept 20 m/s to avoid any 
additional phenomenon, if any, arising with change in RN. The maximum intensity of turbulence 
is of the order of 0.001% at the inlet boundary.  Throughout our study, the angle of attack, angle 
between the direction of width B and that of the uniform flow, was kept zero. 
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Figure 1.  Computational Domain of Rectangular Prism 

 



  

r/D=0.01

  
         (a) Grid near the Rectangular Prism                                    (b) Grid at the corner  

 
Figure 2.  Details of grid near and at the corner of the rectangular prism 

 
Models are subjected to forced oscillations in the heaving mode only. A sliding mesh 

technique with non-periodic grid interface is employed to allow the forced oscillations of the 
rectangular prism in y-direction. The boundary conditions for the wall zones produced from the 
moving interface zones are set to be velocity-inlet as per required by Fluent. Outflow boundary 
condition was used at outlet boundary. Symmetry condition was used for top and bottom surface  
of the domain. The number of mesh used for edges of B/D=2.0 and 4.0 are 70 x 50 and 80 x 40 
respectively. Smaller meshes were generated at each edge corner to avoid singularity of the 
solutions. And equally distributed 15 meshes were used in span wise direction. Total number of 
mesh used for model 1 and 2 are 293,000 and 320,000 respectively. For each model, 10 cases 
with reduced velocity ranging from 3 to 20 were chosen for the calculation purposes. 

 
 Table 1.  Model Dimensions and Analysis Parameters 

 
Models I II 
D (cm) 1 1 
B (cm) 2 4 
Z (cm) 1.5 1.5 

RN 13,000 
Cs 0.032 

Span wise number of meshes 15 
Total no of meshes 293,000 320,000 

 
 
 
 
 
 
 
 
 

 
Forced oscillations and frequency response of unsteady lift force 
 

The models were placed in 3D flow in direction of the prism width and subjected to a 
forced sinusoidal oscillation, 
 

 h(t) = hocoswt (10)
where ho is amplitude of oscillation and w is the frequency of oscillation. The sliding 

mesh is subjected to transverse displacement obtained by the above expression. And the 
resulting aerodynamic force L(t) was measured, L(t) and h(t) are considered positive along the 

 



positive z-direction. During this study, we chose the amplitude of oscillation ho as a variable 
parameter as follows: for model 1(B/D=2), ho=0.1D and for model 2 (B/D=4), ho=0.02D. The 
reason behind choosing amplitude ho=0.02D of model 2 will be described in later section. The 
corresponding reduced wind velocity (Ur=U/f.h) was in the range of 3-20 where “f ” represents 
the frequency of forcing oscillation.  

The frequency response part is expressed as follows: 
 

 CL(t) =CLocos(wt+b) (11)
 
 

where CLo is amplitude of the lift coefficient force coefficient and b is the phase difference 
between the exciting force and lift force acting on the surfaces. These can be obtained from lift 
force history from numerical calculations as explained below: 
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And the real and imaginary part of the lift coefficients is determined using following 
relations: 

 CLR = CLocos(b)    ,   CLI = CLosin(b) (13)
Details on this subject could be found in Washizu et al. (1978). It is worth mentioning 

here that the system becomes unstable at a condition when CLI≥0 indicating the negative 
aerodynamic damping region leading to self excited vibration of the system.  
 
RESULTS AND DISCUSION 
 

This section includes the results of frequency response component of the unsteady lift, 
obtained from numerical simulation, acting on the oscillating prisms. The characteristic of wake 
flow is examined by evaluating the phase difference between the wake velocity and forcing 
oscillation. Also, the variation of pressure around the prisms during oscillation is visualized and 
vortex formation and shedding into wake is discussed. 
 
Frequency response part for model 1 with B/D=2 

Fig 3 shows the characteristic frequency response of model 1 subjected to amplitude of 
0.1D. The ordinates are dimension-less lift force coefficient (CL), the phase angle β, the real part 
CLR and imaginary part CLI, whereas the abscissa is the reduced wind velocity (Ur=U/f.h). 

Fig 3(b) shows the variation of the imaginary part of lift coefficient that corresponds to 
the instability due to negative aerodynamic damping. CLI changes from negative to positive at 
low reduced velocity of 5 and then again becomes negative till reduced velocity of 20 is 
reached. Thus, indicating the presence of self excited vibration at about Ur=5, called vortex 
induced vibrations and that of Ur≥20 leading to the galloping phenomenon. This is the same 
behavior that is observed in the experimental results of previous studies. Comparison of present 
results and previous experimental results show good agreement regarding the onset of instability 
at low reduced velocities. However, the predicted values of CLR differs from the experimental 
values at reduced velocities lower than 6.  

Fig 3(c) shows the phase angle of the lift force to the excitation force. An abrupt phase 
change with the reduced velocity is well capturd by numerical simulation, and this prediction 

 



agrees well with what is reported by previous experiments. Fig 3(d) shows change in 
dimensionless amplitude with increase in the reduced velocity. A good agreement can be 
observed among the experimental and numerical results. 
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Figure 3.  Real Part, Imaginary Part, Phase Angle and Absolute Value of Unsteady Lift Force .
      Coefficient Vs Reduced Velocity for Model 1 (B/D=2) with amplitude 0.1D 
 
 

Frequency response part for model 2 with B/D=4 
Fig 4 shows the characteristic frequency response of model 2 subjected to amplitude of 

0.02D. The ordinates are dimensionless lift force coefficient (CL), the phase angle β, the real 
part CLR and imaginary part CLI, whereas the abscissa is the reduced wind velocity (Ur=U/f.h). 

In case B/D=4, experimental results show that only for small amplitude, CLI becomes 
positive in the vicinity of the resonance speed (Washizu et al. 1978). Whereas at large 
amplitudes, CLI remain negative through out experimental range of reduced velocity, i.e., system 
did not show any signs of instability at large amplitude of vibration. Therefore, authors chose 
small amplitude of 0.02D in order to check capability of the method used to predict the 
instability of system. 

Fig 4(b) shows the variation of the imaginary part of lift coefficient that corresponds to 
the instability due to the negative damping. CLI become from negative to positive at low reduced 
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Figure 4.  Real Part, Imaginary Part, Phase Angle and Absolute Value of Unsteady Lift Force .
      Coefficient Vs Reduced Velocity for Model 2 (B/D=4) with amplitude 0.02D 
 
 
velocity of 8 and then again becomes negative for the higher values of reduced velocity. Thus, 
indicating the presence of self excited vibration at about Ur=8, called vortex induced vibrations. 
Also calculation shows the change in sign of CLI at Ur=5 which is in accordance with the pattern 
observed from experimental results. The tendency of CLI to remain negative represents absence 
of galloping in this case that is what can be seen from experimental findings. Comparison of 
present results and previous experimental results show good agreement regarding the onset of 
instability at low reduced velocities. However, the calculated values of CLR differs from the 
experimental values at reduced velocities lower than 6.  

Fig 4(d) shows change in dimensionless amplitude with the increase in the reduced 
velocity. A good agreement can be observed among the experimental and numerical results. 
 

Frequency response component of flow velocity 
Figure 5 shows the change in phase angles of the frequency response component of the 

wake flow velocity Uw(t) with change in reduced velocity. The wake flow velocity of forced 
vibrations was measured at the points, which are shown in the respect case, but the points were 

 



kept stationary to match the experimental procedure. The procedure used to calculate the 
frequency response is similar to that of used for the unsteady lift force coefficient. 

From these figures, a tendency of sharp increase in phase angle at the low reduced 
velocities can be observed. However, less change in phase angle is obtained with increase in 
reduced velocity. At low reduced velocity, fairly close resemblance can be seen between phase 
angles of the lift coefficient and that of wake flow velocity.  Also, comparison of numerical 
results with experimental ones reported by Nakamura et al. (1975) shows good agreement.  
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Figure 5.  Phase Angle of Frequency Response Component of Wake Flow Velocity Versus               
.                 Reduced Wind Velocity 
 
 
Variation of flow and pressure distribution around oscillating prisms 

To understand the flow characteristics around the oscillating prisms, the pressure 
fluctuations around the rectangular prisms are investigated. Figures (6) and (7) show the 
instantaneous flow-patterns around the cylinders during one cycle of forced oscillation. The 
prisms with B/d=2 and 4 are subjected to forced sinusoidal oscillations with amplitudes 0.1D 
and 0.01D respectively. The positions of oscillating prism for the corresponding pressure 
distributions are also shown in the respective figures. 

Flow separates at the leading edge of both oscillating prisms and then reattach to the 
surface before reaching the rear edge. From the figures, a vortex formation just behind the 
leading edge can be observed that then travels down the leeward side along the surface. A 
negative pressure is produced on the upper surface just after the maximum amplitude of 
oscillation is reached. This gives rise to a vortex formation by concentration of large negative 
pressure over limited range of the surface during the downward motion of the prism. This 
concentration reach to maximum value by the time lowest position during oscillation is achieved 
and this vortex starts moving towards rear edge due to dragging action of the mean flow along 
the surface of prism during the upward oscillation. And departure of vortex from the upper 
surface occurs when prism reaches the uppermost position during the oscillation. Same behavior 
is observed over the lower surface too. 

The visualization of flow pattern shows that vortex keeps on growing during the half 
cycle from one extreme position to other one, and travels to rear edge resulting in shedding into 
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Figure 6. Instantaneous flow patterns during oscillation of rectangular prism (B/D=2) at Ur=6. 

 



  
  

Figure7.  Instantaneous flow patterns during oscillation of rectangular prism (B/D=4) at Ur=8. 
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the wake on the way back to the original extreme position. Also, it can be seen that at the time 
the negative pressure concentrates leading to vortex formation on the upper surface, vortex of 
lower edge is departing to the wake that results into relatively less negative pressure on lower 
surface. As a result, prism is subjected to an upward lift that is in accordance with the upward 
motion of the prism and vice versa. This interaction between the lift force and the prism 
movement is repeated in each oscillation. Therefore, it can be concluded that the prism is 
subjected to an exciting force whose frequency is equal to that of the oscillating prism. The 
formation of vortex on the surface is subjecting the cylinder to relatively large lift force as 
compared to case where only Karman vortex is present, i.e., for static cases. This simulated 
behavior agrees with the explanation given by Komatsu et al. (1980) based on the experimental 
results.  
 
 

CONCLUSIONS 
 

The aerodynamic instabilities of rectangular prisms having different side ratios of 2 and 4, in 
heaving mode under uniform flow conditions were investigated using LES turbulence model 
and then compared with experiments. The study has been conducted by employing forced 
oscillation method. Following are the conclusion drawn from this study: 
 

1) The resonance characteristics of rectangular prisms under external forcing oscillations are 
pursued. The possibility of occurrence of vortex excitation and galloping for B/D=2 is well 
predicted. In addition, absence of transverse galloping for B/D=4 is also indicated by the 
numerical work. An abrupt phase change in lift force leading to the generation of negative 
aerodynamic damping is well captured and the estimated values are well within the 
experimental data. 

2) The phase angle of wake velocity shows sharp change at low reduced velocities and rather, 
mild change is observed at higher velocities. Though, some shift is observed among 
experimental and numerical values for rectangular prism with B/D=4, overall pattern is 
found in good agreement qualitatively. 

3) The mechanism of vortex formation and shedding into wake for the cases where separation 
points are on the leading edge is discussed. The numerical produces clear image of this 
phenomenon which otherwise is not easier to get with smoke tests. 

4) The region of very low reduced velocities (Ur=3~5) shows much difference from the 
experimental results. Since wake effect may influence the flow strongly for such reduced 
velocities, further numerical investigations must be carried out in this region.      

 
This numerical approach successfully predicts the occurrence of aerodynamic instability of 

rectangular prisms with different width-to-depth ratios. In conclusion, this approach can be 
applied to cases where vortex excitation is expected and further studies for the complex sections 
used in real world structures are considered necessary. 
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