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ABSTRACT 

 
In this study, aerodynamic characteristics of square prism in a uniform flow with respect to 

various angles of attack were investigated using LES turbulence model. As a result, mean forces, drag 
and lift, mean surface pressure, and mean flow patterns were in good agreement with the wind tunnel 
tests. It was found that computational domain in the spanwise direction gave strong impacts on 
fluctuations, drag, lift, and pressure, indicating that spanwise length should be long enough to evaluate 
quantitatively. Strouhal number of predictions met well with experiments including capturing of the 
peak. Finally, we proposed an estimation method of fluctuating aerodynamic forces with no spanwise 
length dependency, and confirmed the validity of the approach using the numerical results. 
 
1. INTRODUCTION 
 

It is important to know aerodynamic characteristics of flow around a rectangle section structure, 
typically seen in tall buildings and bridges, in wind engineering area. Flow induced vibrations sometimes 
occurred at a bridges could cause serious damage to the structure. There are various types of 
aerodynamic problems such as gast, gallopings, vortex-induced vibrations, and aeroacoustics, of which 
aerodynamic forces are key to the evaluations. Square prism is a tipical shape of rectangle structures, 
and considerable experimental studies have been accomplished(e.g. Vickery 1966, Otsuki 1978, 
Bearman 1982) in which it was addressed  that aerodynamic forces, drag, lift, and moment, and surface 
pressure dramatically change when a separated flow generated at front edge reattaches to the body.  

Lately, many numerical studies have been reported, and successful to some extent. For example, 
Tamura(1990) predicted mean drag forces and mean lift forces for various attack angles using DNS, 
and the predictions met very well with wind tunnel test results, however, no discussion on fluctuations 
was presented. Hirano et.al.(Hirano 2002) presented predictions of flow around 2:1 rectangular body 
using LES, resulting good agreement with wind tunnel test results on mean drag force, mean lift force, 



and Strouhal number, however, fluctuations, important when aeroacoustics is of interest, were not 
included in the discussion. LES, calculates large eddies directly while models small eddies, captures 
unsteady and three dimensional effect, inherent turbulence characteristics, is a good candidate of the 
prediction approaches on this topic. Many researches have performed and examined predictions of 0 
degree angle of attack, however, very few have focused on angle variations, nor discussed fluctuations.  

In this paper, LES was used for the calculations of a square prism in a uniform flow. Section 2 
describes numerical model and boundary conditions used in the present calculations. Section 3 
presents mean aerodynamic forces, mean surface pressure, and flow patterns. Section 4 presents 
fluctuating aerodynamics as well as Strouhal number. Section 5 presents our proposed estimation 
method of fluctuating aerodynamic forces that has no spanwise length dependency.  
 
2. NUMERICAL MODEL AND BOUNDARY CONDITIONS 
 
2.1 Governing equations 

 
The governing equations employed in LES model are obtained by filtering the time-dependent 

Navier-Stokes equations as follows; 
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Where, ju  and p  are filtered mean velocity and filtered pressure respectively. ρ  is density, and ijτ  is 
subgrid-scale stress defined by 

ij i j i ju u u uτ ρ ρ≡ −  (3) 

The subgrid-scale stresses resulting from the filtering operation are unknown, and modeled as follows; 
12
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Where tµ is subgrid-scale turbulent viscosity, and ijS is the rate-of-strain tensor for the resolved scale 
defined by 
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2.2 Smagorinsky model 

The subgrid-scale turbulent viscosity tµ is modeled using Smagorinsky model(Smagorinsky 
1963). In the Smagorinsky model, the eddy-viscosity is modeled as 

2 2t s s ij ijL S L S Sµ ρ ρ= =  (6) 

Where sL  is the mixing length for subgrid-scales, and defined as  



( )1/3min ,s sL C Vκδ=  (7) 

where κ  is the von Kármán constant, 0.42, sC  is the Smagorinsky constant, δ is the distance to the 
closest wall, and V  is the volume of the computational cell. An order of 0.1 for sC is widely used in 
which normally explicit discritization schemes are used. Negative numerical diffusion is generated in 
explicit discritization schemes whereas positive one is generated in implicit schemes employed in this 
study. Therefore, in this study sC =0.032 is used based on a study in which spectrum approach was 
applied to a LES calculation (Ma 2000).  
 
2.3 Boundary conditions 

Shear stresses are specified for the surfaces of the square prism. When a wall-adjacent cell is in 
the laminar sublayer, the wall shear stress is obtained from the laminar stress-streain relationship as 
follows; 
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If the mesh is too coarse to resolve the laminar sublayer, it is assumed that the centroid of the 
wall-adjacent cell falls within the logarithmic region of the boundary layer, and the law-of-the-wall is 
employed.  
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Where u is filtered velocity that is tangential to the wall, uτ is friction velocity, κ  is von Kármán 
constant, and constant E is 9.8. Inlet boundary is specified as a uniform flow, and outflow is specified 
for the outlet boundary, and the rest of calculation domain boundaries are specified as symmetry.  
 
2.4 Numerical method 

 
Finite volume method and unstructured collocated mesh approach is used in the calculations. In 

the governing equation, second order central difference scheme is used for the convective and viscosity 
term discritization. Second order implicit scheme is used for the unsteady term. SIMPLE(Patanker 
1980) method, a semi-implicit approach, is used for solving the discritized equations. The discritized 
equations are expressed as the followed form.  

p p nb nb
nb

a a bφφ φ= +∑  (10) 

Where ,p nba a denote respectively unsteady term, convective term, and diffusion term of the 
conservation equations. nb , neighboring point, is denoted each cell points of the adjacent cells. 
FLUENT(Fluent Inc. 2003) was used for the solver. 
 
2.5 Modeling conditions 
 

Each edge length of the square prism is 1 cm. Length of calculation domain, square section as 
shown in Figure 2, is 60D as shown in Figure 2. Uniform velocity, U, at inlet boundary condition is 



15 m/s . Figure 3 shows the grid mesh in the vicinity of the square prism and of a corner of the square 
prism. As shown in Figure 3, mesh density is higher for the corner and total 62 meshes are distributed 
on an edge. The corners of the square prism were rounded such that the radius of curvature is 1/100 of 
the square edge length that is the same as that of Tamura(1990). 1/10D was used for each mesh size in 
the spanwise direction. Main parameters used in the calculations are presented in Table 1. Total twelve 
cases were performed with respedct to angles of attack, 0, 2, 6, 8, 12, 13, 14, 16, 20, 30, and 45°, for 
1D spanwise length model, and total four calculations were performed with respet to angles of attack, 
0, 14, 20, and 45°, for the 6D spanwise length model. In addition, for angle of attack 20°, further cases 
in which spanwise length are 2D, 3D, and 4D were performed for proposed estimation of fluctuating 
aerodynamic forces mentioned later.  

 
 
 

 

 
 

(a) Mesh near the square prism (b) Mesh in the vicinity of edge corner 

Figure 3. Mesh in the vicinity of the square prism and its corner 
 

 

Table 1. Main parameters 

Reynolds num.  ν/UD  104 

Non-dimensional time 
DtU /  

0.04  

Spanwise length        L 1D 6D 

Curvature at the corner 

          r  

D/100 D/100 

Mesh number in span- 

wise direction            N 

10 60 

Number of the mesh 175,000 1,050,000  

Figure 2. Calculation domain  

ｒ＝D/100 

D60  



2.6 Definition of coefficients of aerodynamic forces 
 
a. Pressure coefficient 

Mean pressure coefficient, piC , and fluctuating pressure coefficient, '
piC , at i th cell of a square 

prism surface are respectively defined as follows; 
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Where, refp  is the reference pressure at mid point in span direction of the lowest corner of the inlet 
boundary. τ  is shear stress, A is surface area of the prism, ρ  is reference density, U is reference 
velocity used inflow velocity. Mean pressure coefficient is derived that taking average of 
non-dimensional time, /tU D , from 200 to 600 then taking average those data in spanwise direction. 
The same manner was taken for mean drag and lift averaging operations. 
  
b. Drag and lift coefficients 

Figure 4 shows the definition of angle of attack and responded aerodynamic forces directions. 
As shown in the figure, 0° of angle of attack is defined that front surface of the square prism is normal 
to the wind direction, positive value for anti-clockwise direction.  

Mean drag coefficient, DC , and lift coefficient, LC , and fluctuating drag coefficient, '
DC , and lift 

coefficient, '
LC , are defined as follows. Where, Ai is the ith cell surface area of a square prism, A  

denotes a product of D  and L ,  spanwise length. iβ is an angle between normal direction of a 
prism surface on which the ith cell is belonged and wind direction. In this study, contribution of shear 
stress, less than 0.2 %, to the aerodynamic forces, was ignored to compare with experiments that were 
derived from surface pressure. 
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Figure 4. Definitions of aerodynamic forces and angle of attack 
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3. MEAN AERODYNAMIC FORCES 
 

Mean aerodynamic forces are key factors in gust and galloping problems. How accuracy 
predictions of those forces is importance. In this section, coefficients of mean aerodynamic forces with 
respect to various angles of attack are predicted to see characteristics of mean aerodynamic forces. 
Then mean surface pressure distributions will be derived to find how that is associates with flow 
patterns.  
 
3.1 Coefficients of mean aerodynamic forces 

 
Figure 5 shows coefficient of mean drag forces and lift forces with respect to attack angles 

ranging from 0° to 45°. As shown in the figure, in the angles of attack between 0° and 12°, drag 
coefficient, DC , moderately decreases with an increase in α , and takes minimum value at around 
α = 13°. At α around 14°, DC turns to increase and moderately increases with an increase 
inα greater than 30°. The present calculations were in good agreement with Otsuki(1978) and 
Igarashi(1984) whereas slightly underestimated at α = 0° and slightly overestimated at α = 20° and 
45 ° compared to that of Nishimura(2000). The reason will be mentioned in detail in the later section 
with which mean surface pressure of the square prism is associated.  

Regarding coefficients of mean lift forces, LC , for angles of attack between 0° and 12°, LC  
linearly increases with an increase in α . Angles of attack at around 14°, LC  turns to decreases with an 
increase in α , and values are almost the same in angles of attack greater than 30°. The prediction 
results well capture the phenomenon of acute change of mean lift force at around α = 14° that are 
observed in experiments as well. Overall, predictions of coefficients of mean lift forces are in good 
agreement with experiments. No significant difference is observed in the results between spanwise 
length 1D case and that of 6D case in both mean drag forces and mean lift forces. It can be said that 
mean aerodynamic forces are quantitatively well predicted using 1D of spanwise length, indicating that 
dependency of spanwise length is small in mean aerodynamic forces.  
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(a) Mean drag forces (b) Mean lift forces 
Figure 5. Coefficients of mean drag forces and lift forces 



3.2 Mean pressure coefficients 
 
Characteristics of mean aerodynamic forces can be identified by observing mean pressure 

distributions of the square prism surfaces since mean aerodynamic forces are derived from integration 
of surface pressures.  

Figure 6 shows coefficient of mean pressures, pC . At angle of attack at 0°, coefficients of 
pressure are negative except those in front face, and values are relatively low with small change, 
indicating that flow pattern is in perfect separation type. As shown in Figure 6(a), predictions of 
pressure coefficients in the rear surface is over estimated compared to those of experiments. This can 
be the caused that predictions of drag coefficients underestimate those of Nishimura(2000)  as 
presented in the previous section. At angle of attack 14°, Figure 6(b), pressure recovery in the vicinity 
of rear edge of the upper surface is observed since magnitude of negative pressure in the vicinity of the 
rear edge was lower than that in the front edge. It is assumed that intermittent reattachment causes the 
pressure recovery in this location. Coefficients of pressure at upper surface decreased with an increase 
in angles of attack, and takes minimum at 14°, that is in good agreement with the experiments. On the 
other hand, at angle of attack 20°, Figure 6(c), a peak caused by pressure recovery was observed at 
near rear edge, indicates reattachment of shear layer. For angle of attack at 20° and 45°，rear surface  
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Figure 6. Coefficients of surface pressures 
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Figure 7. Mean pressure coefficients at the center of rear suface 
 
pressure is underestimated compared to Nishimura(2000), that is caused by that mean drag 
coefficients are larger than those of their experiment data. Pressures of rear surface depend on behavior 
of high shear layer in the vicinity of rear corner, and it is possible that extent of the curvature of the 
corner has impact on the results of both experiments and predictions. Edge length used in the Igarashi 
is 3 cm of which curvature is relatively large whereas curvatures of Nishimura(2000), 6cm, and 
Otsuki(1978), 8cm, respectively are relatively small. Impact on the coefficients of mean pressure at the 
mid rear surface, pbC , caused by curvatures of square prism corner can be seen in the experiments.  

Figure 7 shows mean pressure coefficients at the center of rear surface, pbC , with respect to the 
variation of angles of attack. As shown in the figure, the results of predictions were in good agreement 
with those of Igarashi in which curvature of the corner is relatively large.  
 
3.3 Flow Pattern  

 
Pressure distribution of square prism has large impact on flow patterns. Figure 8 shows mean 

streamline of four representative attack angles. At angle of attack is 0°, the shear layer form perfect 
separation flow in which no reattachment to the upper surface of the square prism was observed. Twin 
large eddies are formed in the back of the square prism. At angle of attack is 14°, Figure 8(b), 
separated flow at front edge intermittently reattaches at around rear edge. Reattachment area in time 
average observed in the experiments is well captured. A large singe eddy is formed in the back of the 
square prism, caused maximum lift force. At angle of attack is 20°, Figure 8(c), separated shear layer 
clearly reattaches at around rear edge, and separation bubble generated at front edge of the upper 
surface became small compared to that at angle of attack is 14°. In addition, a single eddy is forming 
near the lower surface area of the square prism. At angle of attack is 45°, Figure 8(d), streamline goes 
along with the upper surface, and separated stably at rear edge corner. A twin eddies are formed in the 
back of the body. 
 
4. FLUCTATING AERODYNAMIC FORCE 
 

From the previous section, mean aerodynamic forces are well predicted using LES. In unsteady 
aerodynamic force problems and vortex-induced vibration problems, fluctuations of  
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(b) =α 14° (d) =α 45° 

Figure 8. Mean streamline in change with angles of attack 

aerodynamic forces are of importance. Higher accuracy of high frequency components as well as 
fluctuations ones are required in a prediction of aeroacoustics problems. In this section, fluctuating 
aerodynamic forces with varies of angles of attack are investigated. 
 
4.1 Fluctuating aerodynamic forces 

 
Figure 9 shows the results of predictions of fluctuating drag coefficients and fluctuating lift 

coefficients. As shown in the figure, fluctuations are strongly depend on spanwise length. The results of 
spanwise length using 6D is closer to the experiments compared to that using 1D.  

Regarding fluctuating drag forces, '
DC , predictions are in good agreement with the experiments 

of Nishimura(2000) except that at angle of attack 0° in which prediction is  underestimated the 
experiment.  

Regarding fluctuating lift forces, '
LC , coefficients of fluctuating lift forces significantly degrease 

with an incrase in angles of attack between 0° and 8°. Then at angle of attack 12° or greater, '
LC  

moderately increases until 20° followed by almost flat for angles of attack greater than 20°. This 
tendency meets the experiments, however, predictions are overestimate the results of Nishimura(2000) 
in the range of angles of attack larger than 20°. The reason of the overestimation is considered to be the 
difference between the curvature of the edge corner of numerical model and experiment one. 
 
4.2 Fluctuating pressure coefficients 

 
Fluctuations of pressure coefficients of rear surface and lower surface have strongly affect 

fluctuations of lift coefficients. Thus at the beginning, those values are derived before discussing the 
fluctuating pressure coefficients of the square prism.  



Figure 10 and Figure 11 respectively show fluctuating pressure coefficients at rear surface center, 
'
pbC , and those of lower surface center, '

pcC , plotted with experiments. As shown in figure, predictions 
of '

pbC  met well with Igarashi(1984) in all angles attack whereas those are overestimated 
Nishimura(2000) and Otsuki(1978) for angle of attack greater than 20°. Regarding '

pcC , similar trend 
is observed between predictions and experiments. The reason of the overestimation is considered to be 
the difference between the curvature of the edge corner of numerical model and experiment one. 
High-shear layer tends to be unstable in smaller curvature, which means smaller acute angle, and and 
fluctuations of pressure component of Strouhal number become small.  

Figure 12 presents fluctuation of pressure coefficients. Row fluctuation data are 
non-dimensionalized by dividing '

pcC  to eliminate the curvature effect mentioned above. At angle of 
attack 0°, Figure 12(a), the results of predictions were in good agreement with the Nishimura(2000), 
except rear edge of the upper and the lower surface area where part of the separated shear layer 
reversely flows and reattaches at the vicinity of rear edge. 
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(a) Coefficient of fluctuating drag force (b) Coefficient of  fluctuating lift force 

Figure 9. Coefficients of fluctuating drag and lift force with angles of attack 
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Figure 10. Coefficients of fluctuating pressure at 
rear face center 

Figure 11. Coefficients of fluctuating pressure at 
lower face center 
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Figure 12. Non-dimensionalized pressure distributions 

 
4.3 Strouhal number 

 
Strouhal numbers with respect to each angles of attack are discussed in this section. Figure 13 

shows Strouhal number, tS , defined by tS ＝ /sf D U . Where sf is the dominent  
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Figure 13. Strouhal number in various angles of attack 



frequency of the fluctuating lift force coefficient, D is the length of edge of the square prism, and U is 
inflow velocity.  

As shown in figure, the present calculations qualitatively met well with experiments including 
capturing the acute change at around 13°. All predictions were in the range of experiments data. It was 
reported that frequency of vortex shedding at a perfect separation type flow is associated with 
interference between separation shear layer and wake(Igarashi 1984). In this study, frequencies of 
vortex shedding are well predicted in both perfect separation type flow and reattachment type flow. 
According to the results, it can be said that LES, unsteady 3 dimensional model, is able to quantitatively 
predicts vortex shedding generated from a square prism. 

 
5. A PROPOSAL OF ESTIMATION METHOD OF AERODYNAMIC FRORCES 
 

Aerodynamic forces, fluctuations in particular, depend on length in spanwise direction as 
mentioned above. In this study, we propose a method for estimating coefficients of aerodynamic forces 
that do not depend on spanwise length of the square prism. Then we verify the method.  

Figure 14 shows coefficients of fluctuations of aerodynamic forces with respect to each span 
length. By inspection, errors of the predictions decrease monotony as the length is getting longer. Here, 
we estimate aerodynamic forces, Φ , free from spanwise length using the following equation.  

γ γφ εΦ = +  (14) 

Where, γ  is a length factor so that L = Dγ , γφ  is the result of the calculation, γε is predicted errors. 
Suppose that if a predicted error monotony decreases, prediction error can be approximate as an 
exponential function.  

ce γ
γε β −=  (15) 

Where, c is a decay factor, β is a proportional coefficient. Based on the above, coefficients of 
aerodynamic forces that do not depends on spanwise length is estimated as;  

ce γ
γφ β −Φ = +  (16) 

Where, γ  is an arbitrary positive integer other than zero, and the following equation is derived.  
( 1)
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The proportional coefficient, β , and the decay factor, c, can be derived from Eq.(17) as 
follows;  
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Similar approach is seen in Richardson interpolation method (Richardson 1910) in which 
discretization errorr of partial differential equations are estimated. In this study, we used power function 
rather than exponential function Richardson interpolation method employed since the  
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Figure 14. Coefficients of fluctuating aerodynamic forces and 
estimated errors with varying spanwise length  

 
longer the spanwise length the smaller the correlation factor of turbulence exponentially (Wooton 1971). 
To validate the proposed method, estimated coefficients of fluctuating aerodynamic forces are derived 
using spanwise length 2D, 3D, and 4D. The results are shown in Figure 14(a). 

As seen in figure, coefficients of fluctuating aerodynamic forces are getting closer to the 
asymptotes as longer the spanwise length. Figure 14(b) shows estimated error with varying spanwise 
length. Estimated error is getting smaller as spanwise length is getting longer. At spanwise length 20D, 
estimated errors of fluctuating aerodynamic forces become almost zero. As indicated above, it is 
possible to estimate aerodynamic forces using predictions of spanwise length 2D, 3D, and 4D, resulting 
a possibility of saving computational costs, smaller calculations time and memory.  

 
6. CONCLUSIONS 
 

Aerodynamic characteristics of square prism in a uniform flow with respect to various angles of 
attack are investigated using LES turbulence model compared with experiments. As a result the 
following finings were derived.  

 
1) Regarding coefficients of mean aerodynamic forces, DC  and LC , and coefficients of mean 

pressure distributions, pC  , predictions were in good agreement with experiment in any angles of 
attack.  

2) Regarding coefficients of fluctuations, '
DC and  '

LC , it was found that predictions heavily depended 
on domain length in spanwise direction. Coefficients of fluctuating aerodynamic forces are within 
the range of experiments dispersions. Predictions of coefficients of pressure distributions met well 
with experiments except the case of angle of attack 14 at which intermittent reattachment is 
observed in the experiments.  

3) Regarding strouhal numbers, acute change with respect to angles of attack was well captured, and 
the predictions are in good agreement with the experiments.  

4) We proposed an estimation method of spanwise length free aerodynamic forces based on shorter 



spanwise length square prisms prediction results by changing the spanwise length systematically. In 
the valiations, spanwise length 4D is found to be enough for the estimation of fluctuating 
aerodynamic forces whereas, normally, 20D spanwise length is required.  
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