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ABSTRACT

In this paper, flutter analysis of rectangular cross-sections based on k-£ model is discussed.
Recently, some successful application of the computational fluid dynamics to the simulation of
flutter has been reported. It is noteworthy to mention here that almost all of the aeroelastic application
has been performed so far by means of two-dimensional analysis. These good performances of 2D
analysis is due to the turbulence viscosity which acts as the mimic spanwise momentum diffusion.
However, two-dimensional analysis is essentially an approximation and thus it is necessary to
examine physical consistency of the obtained results. In this paper, the authors have followed
Matsumoto(1994, 2001), who have investigated flutter characteristics of generic rectangular cross-
sections, by means of k-& model and physical consistency of the obtained numerical result is
examined. As a result, good agreement was obtained for B/D=5 and 10 cross-sections, however,
for B/D=20 cross-section, flutter analysis indicated a conservative prediction in flutter speed.

INTRODUCTION

In this paper, flutter analysis of rectangular cross-sections based on k-€ model is addressed.
Recently, some successful application of the computational fluid dynamics to the simulation of
flutter has been reported. For example Larsen and Walther(1998) has reported the applicability of
the discrete vortex-method in some generic configuration at first and then extended it to some
practical bridge cross-sections. The authors has examined k-£ model on the prediction of vortex-
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induced vibration and torsional flutter of generic rectangular cross-sections(Shimada and Ishihara
1999, 2000). It is noteworthy to mention here that almost all of the acroelastic application has been
performed so far by means of two-dimensional analysis. Since in high Reynolds number region,
however, three-dimensionality of the flow can not be neglected, these good performances of 2D
analysis is due to the turbulence viscosity which is produced from implemented turbulence model
or numerical dissipation and acts as the mimic spanwise momentum diffusion. This feature is
extraordinarily advantageous on solving the problems involved with the aeroelastic vibration, which
require a lot of computational time. However, two-dimensional analysis is essentially an
approximation and thus it is necessary to examine physical consistency of the obtained results.

By the way, the characteristics of the aeroelastic vibration such as flutter are characterized by
separation and reattachment of the flow. Matsumoto et al.(1994) followed the method proposed by
Scanlan and Tomko(1971) and have investigated behavior and mechanism of the unsteady
aerodynamic forces in detail using a series of rectangular cross-sections whose B/D ratio(B
:chordwise length and D : depth of the cross-section) ranging from 5 to 20. As a result, they
showed that torsional flutter and coupled flutter are nothing but a phenomenon which is induced
by the continuous change of each component of the unsteady aerodynamic force according to B/D
ratio. Furthermore, they also made a detail investigation of the contribution of each component on
the flutter characteristics, such as frequency and damping by means of their original “Step-by-
step” complex eigenvalue analysis.

In this paper, the same approach is followed by the computational fluid dynamics based on k-
€ model and physical consistency of the obtained numerical result with the previous experimental
results is examined. Based on this result the application of the k-£ model to the prediction of the

flutter is discussed.
NUMERICAL METHOD

The Reynolds-averaged incompressible Navier-Stokes equation is expressed as follows:
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where, v, is the eddy viscosity coefficient and is given as v, = C,k* / €. Turbulent kinetic energy k
and'its dissipation rate € are obtained by the following transport equations:
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The empirical parameters in the equation are all of which are identical to those used in the
conventional standard k-€ model. P, is the production term of turbulent kinetic energy. In the
present analysis a model proposed by Kato & Launder (1993) in which the production term is
modified based on the assumption of flow irrotationality is employed in order to prevent the excessive

production of turbulent kinetic energy near the leading edge:
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The present method employs two-layer model(Norris & Reynolds 1975). That is, the k equation
is solved by assigning k=0 on the solid boundary. Instead of solving € equation, the € near the wall
is determined by the turbulent kinetic energy k using a length scale ,. Eddy viscosity in the region
in which £ equation is not solved is calculated using the turbulent kinetic energy k and a length

scale I, same as &,
k3/2

T
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The length scale 1, and /, are proportional to turbulent eddy /(= xy)scale and are determined
using following relations,
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where the constants are given as C, = xC,”and 4, =50.5. In two-layer model since /. and l, are
functions of the turbulent Reynolds number Re , the effects of the Reynolds number on flow around
bodies with rectangular cross-sections can be evaluated. In the present calculation, the two-layer
model is applied to the region only within three meshes away from the solid boundary. The above
set of equation is transformed by using a generalized coordinate system and is then solved by the
finite difference method. The convective term in the velocity transport equation is discretized by a
third-order upwind difference scheme, and the convective terms in the k and & transport equations
are discretized by a first-order upwind difference scheme to stabilize the numerical instability at
high Reynolds number arising from the nonlinear effect of the convective term. The pressure is

obtained by solving the Poisson equation which is given as,
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The Reynolds number is chosen to be Re=22,000 so as to be consistent with the order of the
Reynolds number in the compared experiments. The number of grid points is 320 X 200=64,000.

RESULTS

Identification of unsteady aerodynamic force coefficients

As well known, elongated cross-section produces motion induced forces by the interaction
between the heaving and torsional motion and so-called coupled flutter is induced. Since it is a
divergent vibration, which magnifies its amplitude as the increase of wind speed, one has to ascertain
that its onset velocity is not within the region of design wind speed. For this purpose, flutter analysis
is performed. For the two-degrees-of-freedom system which consists of heaving and torsion,

aerodynamic lift and pitching moment are expressed as follows,
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Fig.1. Definition of motion and force components
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where K = bw /U is reduced circular frequency, H‘.‘and A,.‘(i=1,4) are unsteady wind force coefficients
and b=B/2 is a half chord length B. In the following calculations amplitudes is y/B=0.025 for
heaving and ¢,=2 deg. for torsional motion, which followed the experiment by Matsumoto et

al.(1994).

Unsteady aerodynamic force coefficients
In Fig.2 comparisons were made between the experimental and present numerical results. A

coefficient which is often used for an index of torsional instability is A,". A,” >0 implies possible
occurrence of the one-degree-of-freedom torsional instability, i.e., torsional flutter, on the other
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Fig.2. Aerodynamic coefficients of various rectangular cross-sections. Experiments were conducted
by Matsumoto (1994) : O B/D=5, V ; B/D=10, []; B/D=20, k-£ model : me=; B/D=5,—— ; B/
D=10,—; B/D=20
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Fig.3. Comparison of unsteady pressure distribution obtained by the experiment by
Matsumoto(1994) and the present method. (Torsional motion : ¢,=2 degree)

hand A,’<0 implies possible occurrence of the coupled-flutter. Experimental results which are
represented by plots, A, is positive for B/D=5, almost zero for B/D=10 and negative for B/D=20.
These global tendencies are also well simulated by the present numerical method. These good
agreement suggests the possibility of the present method on the use in the flutter analysis. In some
points in detail, however, for example as can be seen in A3‘, some inconsistencies also still remain
in B/D=20. These points pose a necessity of further investigation.

Unsteady wind pressure distributions
Each unsteady wind force coefficient is an integrated value of the following unsteady pressure
around a cross-section, which is defined as,
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where, |Cp | and ¥, is the fluctuated pressure coefficient and the phase difference with respect to
the motion in frequency . In fig.3 comparisons are made for reduced wind speeds of U/AfB)=1.5
and 22.4. In the experiment which is presented by plots, each |Cp | has a peak near x/D=3.5. From



216

o @BD=S U=
|

W\ (b) B/D=10, U/fB=15
-C :L T~ (c) B/D=20, U/fB=10

Fig.3. Variation of instantaneous streamlines. (Torsional motion: ¢,=2 degree. Vertical line is 5D
from the left corner. )
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Fig.5. Relations between the relative angle of attack and the peak of the fluctuating pressure
coefficients.Experiment is by Matsumoto

fig.4 the portion where |Cp,| is large corresponds, to the inside of the separation bubble. It can be
recognized from fig.3 that the maximum size of the bubble L, is approximately L/D=5. These are
independent of the B/D ratio. This numerical result agrees well with what Matsumoto(1994) has
pointed out that the reattachment of the separated shear layer is independent of the length of the
after body. Phase difference seems to be expressed by a unique line for each reduced wind speed
except for B/D=20 at U/AfB)=7.5. ;

Present numerical method successfully simulated these complicated nature of the unsteady
pressure distribution for B/D=5 and 10. However, for B/D=20, slight differences are recognized in
both of |Cp, | and ¥, near 5<x/D<9.

In fig.5(a), peak value of |Cp, | is illustrated against the relative angle of attack, which is
defined in the fig.5(b). As Matsumoto(1994) has pointed out, the linear relationship can be also
recognized between |Cp, | and the relative angle of attack in the present numerical results.

Flutter characteristics
According to the method which was proposed by Miyata(1989), complex eigenvalues of the

system which implements aerodynamic lift and pitching moment expressed as Eq.(8) and (9) are
derived from the following equation.
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Fig.6. Eigenvalue loci of B/D=5, 10 and 20 rectangular cross-sections. M=1.96kg/m, I=4.9 X
10°%kgm, f o=45Hz, f,=6.0Hz, B(=2b)=0.15m
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where, M and [ are mass and mass moment of inertia per unit length, @ 0 and @, are heaving and
torsional circular frequency at rest respectively. This method is attractive since the complex eigen
values can be readily obtained without any iteration. Circular frequency and logarithmic damping

are determined from complex frequency o, = 0 +iw’ as follows,

0, =|o] 8§ =2m——t (12)

In fig.6 eigenvalue loci of B/D=5, 10 and 20 which are representative of low-speed-torsional,
high-speed-torsional and torsional-branch-coupled flutter type respectively are exhibited. Also in
the figure, in order to validate the present eigenvalue analysis, result of the step-by-step analysis
by Matsumoto(2001) are also exhibited. With respect to frequency, for each type the result by k-€
model are well agreed with the experimental result. Especially in fig.6(c), characteristic of torsional-
branch-coupled flutter type are clearly recognized in the present simulated result, i.e., as the reduced
wind speed becomes larger, both of the branches are getting closer each other. In the experiments,
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logarithmic damping of the heaving-branch is always positive and this characteristics are the same
for the computational results. In the case of B/D=5, the experimental locus gradually increases,
whereas in the computation it turns to decrease almost at fB/U=12. In order to clarify the reason of
this difference, computational results in which only A,” is replaced by the experimental aerodynamic
data are presented in the same figure. Since this difference was improved, the analytical precision
in the prediction of A, is found to be involved with. On the other hand, in the torsional-branch, the
tendency is the same between the experiment and the computation, i.e. from a certain reduced
wind speed the sign of the damping turns to be negative. In each B/D ratio, as the B/D ratio
becomes larger the flutter speed also increases, however, in the case of fig.6(f), the present
computation is conservative comparing with the experimental result. Result of “step-by-step
analysis” by Matsumoto has suggested that A," and production of A," and |H,’| are predominant in
the contribution to the torsional-branch logarithmic damping. In fig.6(f), the computational result
in which A" and H," were replaced by the experimental aerodynamic data also demonstrated the
prediction was improved. Therefore the precision in the prediction of A" and H," is seemed to be
concerned with and may be to the difference in prediction of the unsteady pressure distribution.

CONCLUDING REMARKS

Flutter characteristics of rectangular cylinders for B/D ratios of 5, 10 and 20 were calculated
by means of two-dimensional analysis based on the k- model. The method was concluded to be
effective for estimating global characteristics of the unsteady aerodynamic forces and flutter
characteristic for B/D=5 and 10, however, for B/D=20 cross-section the estimation of flutter speed
becomes conservative.
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