

Current state of offshore wind power in Japan

Offshore wind demonstration projects in Japan

Background of NEDO project

Natural environmental conditions in Japan, such as strong winds during typhoon, high waves, and earthquakes are severer than Europe.

Background of Fukushima project

Benefits

- Offshore wind energy potential along Japan is 1.6TW
- More than 80% of the offshore wind energy potential in Japan are located at deep water.
- The accumulation of wind energy industry will help the restoration of Fukushima

Challenges

- Floating offshore wind technology
- Measurement and Prediction technology
- Floating substation
- Cost efficiency

Compact semi-sub

Advanced spar

V-shape semi-sub

.

Development phases and key success factors

2 Phases:

Phase I (2011~2013)

Phase II (2014~2015)

V-shape semi-sub (7MW)

Floating substation Compact semi-sub (2MW)

Phase I
Floating substation Compact semi-sub

Advanced spar (7MW)

Phase II
Advanced spar

1,480m

1,480m

1,480m

3 key success factors:

Design / Test / Improvement

Cost efficiency / industrialization

Technology maturity / Social acceptance

Presentation of consortium members

Consortium Member	Main Role
Marubeni Corporation (Project Integrator)	Pre-Studies, Approval and Licensing, Operation and Maintenance, Collaboration with Fishery Industry
The University of Tokyo (Technical Advisor)	Measurement and Prediction Technology, Navigation Safety, Public relation
Mitsubishi Corporation	Pre-Studies, Approval and Licensing, Environmental Assessment
Mitsubishi Heavy Industries, Ltd.	V-Shape Semi-Sub Type Floater
Japan Marine United Inc.	Advanced Spar Type Floater and Floating Substation
Mitsui Engineering & Shipbuilding Co., Ltd.	Compact Semi-Sub Type Floater
Nippon Steel & Sumitomo Metal Corporation	Advanced Steel
Hitachi, Ltd.	Floating Electric Power Substation
Furukawa Electric Co., Ltd.	Undersea and Dynamic Cables
Shimizu Corporation	Pre-Studies, Construction and Installation Technology
Mizuho Information & Research Institute, Inc.	Documentation, Committee Operations

FORWARD vision and challenges

Green growth in Fukushima

- Industry accumulation
- Employment
- Restoration

Fukushima FORWARD =

Technical challenge

- Floater concepts
- Measurement and prediction
- Floating substation
- Cost efficiency
- Advanced material

Social acceptance

- Navigation safety
- Environmental assessment
- Collaboration with fishery
- Public relation

Work packages

1 Preliminary study

- · site assessment
- preliminary design

2 Measurement / prediction

- metocean
- floater motion
- substation / power cable

3 Floating wind turbines

- wind turbine
- floater / mooring
- advanced material

4 Grid integration

- floating substation
- dynamic cables

Phase I

5 Operation & Maintenance

- floater / mooring
- wind turbine
- substation / power cable

6 Environment issue

- · environmental assessment
- marine navigation safety
- · collaboration with fishery

7 Documentation

- technical review
- manual
- project report

8 Public relation

- · communication centre
- seminar and symposium

Floater concepts

Compact semi-sub

Passive control with motion

suppression board

Challenge

Good

Good

Control **Motion** Installation Cost

Passive control with ballast water

Good

Good Challenge

三井造船株式会社

Hydro-dynamic control

Good Challenge

Good

ൣ 三菱重工

Construction of compact semi-sub floater

10

Floating metocean measurement technology

Meteorological observation by lidar equipped on floater

The correction of

floater motion by

GPS

accelerometer and

Motion
RTK-GPS
Gyro
Accelerometer

Ocean wave buoi

Wave gauge

ADCP

Sea state

Meteorological measurement by tower equipped on floater

Sea state measurement by wave gauge and ADCP

Develop metocean measurement technology considering floater motion

12

Verification of design and prediction technology

The advanced design and prediction technology for floating offshore wind farm

Water tank test

Grid integration system

World first floating offshore transformer with 66kV dynamic cable

Test for dynamic cable and transformer

Construction of substation

Public relation

- · Exhibition of Fukushima project
- · Model display

- ·Briefing session ·Web page
- ·Symposium
- ·Social acceptance
- · Publication
- ·Communication

Establish the good communication route and relationship with people in local area.

18

